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ABSTRACT OF THE DISSERTATION

A Peer-to-Peer I/O System

in Support of I/O Intensive Workloads

by

Kevin Roland Fall
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Professor Joseph C. Pasquale, Chair

The I/O subsystem interface present in most modern operating systems stems

from the Multics system of the late 1960’s. The Multics I/O design places a user program

in the center of the flow of I/O data, requiring data movement between I/O devices and

user processes. This dissertation argues that an I/O system supporting peer-to-peer com-

munication between I/O objects improves programmability and increases overall system

performance in terms of throughput and minimization of transaction delay over the tradi-

tional model. Peer-to-peer communication refers to the ability to transfer data between I/O

objects (i.e. entities upon which typical read and write I/O operations may be performed)

without direct user processes intervention. User processes define data stream endpoints,

but need not actively transfer data between objects to facilitate I/O data flow. A system

interface and architecture is described which implements a peer-to-peer I/O model. A set

of example applications and measured implementations substantiate the claimed flexibility

and efficacy of the mechanisms described.
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Chapter 1

Introduction

Improvements in computer hardware have enabled the development of complex

applications with enormous I/O demands. Providing adequate system performance for such

applications poses a significant challenge to operating systems, especially with the growing

popularity of multimedia applications and systems. Although both application demands

and hardware performance have witnessed great gains in recent years, I/O system software

performance has not improved commensurately. Furthermore, fundamental assumptions

manifested in an I/O system’s structure may limit achievable performance by introducing

unnecessary overheads.

I/O Intensive applications are those applications with large transput (input or

output) demands—on the order of hundreds or thousands of megabytes. Many applications,

especially multimedia applications, require the movement of large volumes of data between

devices or files in a timely fashion with minimal intermediate manipulation or processing.

Concepts useful for improving I/O system performance for these applications include

minimization of data movement within memory, and separating I/O control from I/O data

transfer [Pas92].

The design of most conventional I/O system architectures dates back to the Multics

system of the late 1960’s and UNIX [ATT78] of the late 1970’s. The UNIX I/O model

provides a continuous untyped stream of bytes between processes and devices. The original

UNIX I/O system provided no inter-process communication (IPC) mechanism for unrelated

1
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Figure 1.1: Conventional Memory-Oriented I/O Model

processes to communicate with each other.1 IPC was successfully added to UNIX with the

introduction of named pipes, and has evolved to include other mechanisms based on shared

memory, network communication, and specialized procedure calls.

Although the various IPC mechanisms create a number of ways for processes

to communicate with one another (and also with devices in some cases), little software

support exists for the direct transfer of data between hardware devices. With the emergence

of multimedia computing, the notion of the computer’s operating system as an “I/O director”

becomes natural, and the I/O architecture should directly support this conceptualization.

User processes specify the sources and sinks of data streams, leaving the job of data transfer

up to the operating system.
1The UNIX pipe facility allowed related processes (those sharing a common creation ancestry) to com-

municate in a simplex manner.
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1.1 The Traditional Memory-Oriented I/O Model (MIO)

Figure 1.1 illustrates the memory–oriented I/O model (MIO) present in the I/O

subsystems of most operating systems today. In MIO, a process wishing to transfer data

between two devices acquires a handle to each device, executes a loop of copy operations

to move I/O data into its own address space, then moves the same data out of its address

space to a destination device. The MIO loop structure operates generally as follows:

handle1 = open("device1", READ)
handle2 = open("device2", WRITE)
allocate buffer1 (size is specified by programmer)

do until no more {
fill buffer1 from handle1 (read)
output buffer1 to handle2 (write)

}

In this illustration, both control and data requests flow between user processes

and operating system. There are several benefits of the MIO structure. MIO provides

great flexibility by allowing user processes to perform any necessary data transformation

on I/O data as it is moved between I/O devices. Manipulation of I/O data is simple with

MIO because I/O data is made directly available to user processes in user-specified buffers.

Manipulation is done generally as follows:

handle1 = open("device1", READ)
handle2 = open("device2", WRITE)
allocate buffer1 (size is specified by programmer)

do until no more {
fill buffer1 from handle1 (read)
manipulate buffer1 or alter control flow

based on contents of buffer1
output buffer1 to handle2 (write)

}

Unfortunately, MIO suffers from several performance problems: data copying

across the user/kernel boundary and overhead associated with scheduling and context

switches. These overheads are discussed in more detail in the following section. In the
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application context of multimedia systems, for example, data copying limits ultimate achiev-

able throughput (e.g., frame rate), and scheduling/context switching can adversely affect

continuity of playback for multimedia applications (skips and loss of synchronization).

1.2 Programming Difficulty of Current Systems

Consider the complexity of coding a delay-sensitive application responsible for

transferring digitized audio samples from a network connection to an audio DAC (digital

to analog converter) using an MIO structure. The programmer must carefully select:

the read and write transfer unit sizes

flow control (in particular, how to handle too fast a sender)

how often a program must execute to satisfy delay bounds

Subtle tradeoffs arise when attempting to make appropriate selections for the

above metrics. Furthermore, each is sensitive to overall system and network loading. For

example, small read/write transfer sizes provide decreased delay but may limit throughput (a

potential problem for a video application). Large sizes can cause the reverse phenomenon:

high throughput but large delay. Currently, these sizes are determined for delay-sensitive

programs in an ad–hoc fashion. When system loading changes, new values must be

determined “on-the-fly.”

Flow control is similarly challenging. Most systems combine flow control and

queuing to achieve reliable data delivery between communication endpoints (both for local

IPC and network communication with reliable protocols like TCP [Pos81]). For the delivery

of uncompressed audio, dropping certain information is tolerable, but specifying this fact

to current systems is awkward at best. One technique involves using non-blocking I/O and

discarding information when I/O would otherwise block. Unfortunately, this method can

lead to losses at inappropriate moments, producing a “glitch” in the final audio output.

In conventional non-real-time operating systems, a programmer faces consider-

able difficulty specifying when processes run. Execution of user processes is required in
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conventional I/O systems because both data input request operations (i.e., reads) and data

output request operations (i.e., writes) need to be performed by user processes. Even in

real-time systems, where programmer’s can specify when processes execute, the interfaces

provided require the execution of user processes and tend to include overly-conservative

scheduling policies to provide execution-time guarantees.

1.3 Performance Implications of Current Interfaces

As discussed in the previous section, MIO-based systems must invoke user pro-

cesses to facilitate the flow of I/O data. Invoking user processes implies several system

overheads:

crossing protection boundaries (system calls)

context switches

TLB misses

loss of locality (caching inefficiency)

data copying

Crossing the user/kernel protection boundary occurs during the execution of any

system call, page fault, or exception. However, Anderson et. al [ALBL91] point out that

while microprocessor integer speeds have improved steadily, support for the operations

required by operating systems has not scaled commensurately. For example, their measure-

ments indicate that a R3000 RISC CPU receives only a factor of 3.9 speed improvement

over its CVAX predecessor for the handling of the null system call,2 while this factor is 6.7

for applications. Similarly, a SPARC-1 CPU can execute a null system call in about the

same amount of time required by the CVAX, but achieves a factor of 4.3 speed improvement

for applications. As the popularity of RISC processors grow, the performance divergence
2A common metric used to evaluate system performance is the time required to execute a “null” system

call, including a simple entry and exit from the kernel without any in–kernel processing. Generally, the cost
of a null system call is small (tens of microseconds or less).
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between operating system and user codes is likely to increase because the techniques em-

ployed to improve applications performance on RISC architectures do not apply equally

well to operating system code. In particular, incorporating large register sets and pipelines,

the processing required to field interrupts, manage threads, examine, save, and restore state

are improved little by deeper pipelines and large register sets.

As with system calls, the overhead involved in performing a context switch has

not been reduced commensurately with the increase in microprocessor integer performance.

Context switches are performed by an operating system to improve CPU utilization during

periods of I/O. Performing a context switch requires selection of a process to run, plus

a change of MMU page table entries to the context of the next process. Context switch

overhead accounts for approximately 60% of the time required to perform a null IPC

between protection domains (the rest of the time is spent in procedure calls and trap han-

dling) [BALL90]. In measurements made by Ousterhout [Ous90b], most RISC machines

showed context switch speeds of about 50% one would expect from the MIPS rating of the

particular CPU tested.

Any replacement of MMU page table entries requires the invalidation of the TLB

(if process tags are not used). TLBs are flushed during context switch operations to ensure

new processes do not receive access to the address space of a previous process. In some

modern processors, TLB reloading is relegated to software, improving flexibility at the

expense of greater complexity in handling TLB misses. Bershad et. al [BALL90] estimates

25% of the time required to do an LRPC (a highly optimized local RPC) is attributable to

TLB misses occurring during virtual address translations.

Change of process context can also have a negative effect on cache performance.

For multiprocessing workloads, where various processes may accumulate cached data,

Mogul and Borg [MB91] estimate poor cache performance induced by context switching

can account for a full order of magnitude performance degradation. Unfortunately, modern

RISC architectures are hurt badly by loss of cache locality. An uncached memory reference

will cost about three times as much or more than a comparable cached memory reference.

As CPU performance has improved at a rate of about 18% to 35% before 1985 and at a
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rate of between 50% and 100% per year thereafter, the row–access times of DRAM-based

memory systems has improved much more slowly—at a rate of about 7% per year [HP90]

(sec. 8.4). This trend suggests the cache miss penalty is likely to increase rather than

decrease in the future.

Perhaps the largest source of performance degradation in conventional systems is

copying of data. Data copying is performed by an operating system to move information

from one buffer to another or between device and system memory. In the traditional UNIX

I/O system, a program moving data between two devices incurs four data copy operations:

I/O adapter to kernel buffer, kernel buffer to user-specified process buffer, process buffer

to new kernel buffer, and finally kernel buffer to I/O device. The first and last operations

are accomplished by DMA or by programmed I/O; the intermediate two are accomplished

by direct CPU copying. Because DMA to physical memory results in a modification to

physical memory without a CPU memory reference, common practice requires a cache

flush (or partial cache flush) when DMA is performed.

Interestingly, the problem of data copying has had its greatest affect on network I/O

performance. When only disks were attached to computer systems, the system bottleneck

was the performance of the I/O device; the CPU could easily copy data to and from user

space with plenty of time to spare. With faster devices (such as network adapters), where

the device I/O rate may be comparable to the CPU execution rate, the bottleneck shifts

from the I/O device rate to the performance of data copies, and thus the memory system.

Several groups credit data copying as a primary problem with respect to system performance

(see [Ous90b], [PCMI91], and [CT90] as examples).

1.4 Summary of MIO

The problems associated with current operating systems supporting a memory-

oriented I/O structure for I/O intensive applications are twofold. First, programming is

made difficult because of the need to select buffer sizes and handle flow control. Second,

the current I/O system interface requires the execution of user processes to move I/O data.
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Execution of user tasks degrades performance by requiring protection crossings, context

switches, and unnecessary data copies. Moreover, as a consequence of the MIO pro-

gramming interface, shared buffering and inter-peripheral hardware transfers are precluded

because I/O data must generally be made available to a user’s address space, and may be

modified by user processes even after it is submitted to the operating system for transfer.

1.5 Peer-to-Peer I/O (PPIO) Philosophy and Goals

The previous section highlights the primary problems associated with the MIO

structure. Specifically, the MIO structure includes a programming interface requiring pro-

grammer specification of I/O transfer unit sizes and the overall MIO structure requires user

process execution for supporting I/O data transfer. This section introduces an alternative

I/O structure known as Peer-to-Peer I/O (PPIO). In PPIO, a programmer need not choose

I/O transfer sizes and user process execution is not required for the flow of I/O data.

1.5.1 Research Goals and Methodology

The following sections of this chapter outline the primary components needed to

achieve the Peer-to-Peer I/O system. These components are described in greater detail in

Chapters 3, 4, and 5.

1.5.2 Guiding Principles

The goals of the research presented in this dissertation are to address the prob-

lems exhibited by traditional MIO systems as described above, following several guiding

principles:

Principal 1 improve performance for a rich set of application programs
Principal 2 assure interface enhancements are conceptually simple
Principal 3 take advantage of special-purpose hardware, if available
Principal 4 enhance sytem interface without duplicating existing function-

ality
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1.5.3 Philosophy

PPIO takes a different view of data movement as compared with MIO. In PPIO,

user processes specify the producer and consumer of a data flow. The operating system

responds by creating an internal association used to keep track of which data producers are

“connected” to which data consumers. The operating system can optimize the movement

of data between producer and consumer by techniques such as buffer sharing. In PPIO, an

application wishing to move data between a data producer and consumer would execute the

following program segment:
handle1 = open("device1", READ)
handle2 = open("device2", WRITE)

ASSOCIATE handle1 with handle2 until EOF
{OS handles data flow from handle1 to handle2}

Supporting associations within the operating system has two potentially signifi-

cant influences on performance. First, the user process establishing the association need not

execute (and be scheduled) for data to be transferred between handle1 and handle2.

Secondly, no process-level buffering is used. Removing the intermediate buffer implies

I/O data need not necessarily be made available to user processes. Thus, I/O data can be

manipulated even if it is not present in main memory (e.g., if it resides only on I/O adapter

memory).

The technique described above is often called streaming in the literature (see

Section 2.4), and it is the data handling model supported by PPIO. Streaming is essentially

a method which “short-circuits” the data path between producer and consumer. Critics are

quick to point out the most obvious drawback: intermediate processing is difficult in such

an I/O model. Fortunately, a number of techniques (some of which are currently under

investigation by other researchers) provide the ability to introduce intermediate processing

into a data stream without requiring a user process implementation. These techniques

are detailed in Chapter 4. By extending the PPIO association model with intermediate

processing capability, PPIO provides the benefits of streaming with the flexibility of module

execution. A process would would create associations in the following general way:
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handle1 = open("device1", READ)
handle2 = open("device2", WRITE)
code1 = open("intermediate_code.exec", READ and EXECUTE)

ASSOCIATE code1 with handle 1
ASSOCIATE handle1 with handle2 until EOF
{OS handles data flow from handle1 through code1 to handle2}

In this case, the operating system manages data originating from device1,

invokes processing described by code1 and deposits the result to device2. The code

referenced by code1 may be executed by any device capable of code execution. More

specifically, the code referenced by code1 need not be executed on the primary CPU, but

may instead be executed on another CPU or on a special intelligent I/O adapter.

1.5.4 Evaluation

The PPIO philosophy adheres to the principles described in Section 1.5.2 as

follows. Many applications require simple movement of I/O data from a source to sink,

including copy programs, application-level gateways (for networking), and video/audio

capture and playback applications. The basic PPIO philosophy provides support for these

applications, and broadens support by incorporating processing modules. Thus, a rich set

of applications are supported (principle 1).

The philosophy rests on creating associations between a data producer and con-

sumer. Connecting I/O objects together in this fashion is not a conceptual leap for a

programmer. For example, telephone operators (before the advent of electronic switching)

are commonly pictured as connecting together a pair of communicating entities with a

“patchcord”. Conceptually, the creation of associations is analogous to the notion of a

patchcord. Additionally, the concept is similar to an inverted pseudoterminal as described

by Ritchie [Rit84] a decade ago. The association concept is simple, thus meeting principle

2.

As previously described, the philosophy includes no buffer interface and does not

require user-level process execution. For these reasons, processing of I/O data need not
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occur on the main CPU and I/O data need not necessarily reside in main memory. Systems

equipped with outboard processors and memory are capable of offloading processing to

peripheral devices. Systems lacking outboard processors but equipped with adapter memory

can perform some data manipulations without moving adapter-resident data to main memory

(thus avoiding a DMA or Programmed IO data copy). Thus, principle 3 is met.

The last two principles of Section 1.5.2 constrain the relationship between mech-

anisms introduced in supporting PPIO with respect to those already present for supporting

MIO. Most existing systems have aread andwrite system function but lack any function

capable of associating the source of a read with the sink of a write. The PPIO philosophy

does not overlap functionality with either read or write, and is not intended to replace either

of these functions (principal 4). Rather, it may be employed by applications wishing to

improve data flow performance.

1.5.5 System Components

To be a useful system design philosophy, PPIO must be implementable in con-

ventional operating systems. The PPIO approach requires additional operating system level

mechanisms above and beyond those provided with conventional systems. Movement of

data through an operating system is accomplished and initiated using several components,

the following of which are of primary importance when realizing a PPIO system:

1. An I/O Interface for User Programs

2. A buffering system for holding in-transit data

3. An execution thread for moving data when necessary

4. A processing module architecture, for performing data transformations

1.6 Contributions

The PPIO design represents a new paradigm for the manipulation of I/O intensive

data flows. This dissertation provides a critical review of the memory-oriented model of
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I/O present in most operating systems and provides an alternative based on a peer-to-peer

design.

The system software support required for implementing a peer-to-peer I/O system

is described, including a novel system interface based on the manipulation of inter-object

associations specified by user processes. A characterization of I/O objects based on at-

tributes represents a new approach to flow control capable of capturing the behavior of

time-sensitive devices. A specification of flow-control algorithms based on attributes com-

pletes the flow control model.

Performance characterizations for three prototype PPIO implementations indicate

a 2–3 factor improvement in throughput and latency for software-based PPIO implementa-

tions with fast I/O devices. The prototypes span several relevant areas, including disk file

manipulation, network-based video playback, and network packet forwarding.

1.7 Organization of the Dissertation

In Chapter 2, work relating to the content of this dissertation is presented. In

Chapter 3, the system interface supporting the peer-to-peer model is introduced, along

with several examples. Chapter 4 describes the execution of processing modules and

code required to support I/O data streaming, including the use of kernel level threads

and code execution invoked via interrupt processing. Chapter 5 investigates the handling

and manipulation of data buffers within the peer-to-peer architecture. Chapter 6 discusses

performance measurements taken from prototype implementations of the PPIO architecture.

Some of the preliminary results have been published in [FP93] and [FP94]. Chapter 7

presents conclusions, a critique, and future work.



Chapter 2

Survey of Related Work

This chapter is devoted to past and ongoing work which relates to the formation

of the peer-to-peer I/O design (PPIO). The design originated as a result of considering the

effects of manipulating multimedia data objects using a general purpose operating system.

Such objects are generally large and lack temporal locality and may not require arbitrary bit

manipulation by user processes. These attributes make efficient handling of such objects

difficult with conventional operating systems, which often improve performance between

devices and user processes by use of caching.

The development of the PPIO design emerges by questioning the assumptions

made in most systems that the operating system’s job (with respect to I/O) is to connect

devices to user processes. The design also borrows from recent work in both operating

system design and high-speed network protocol implementation. Moreover, the PPIO

design has stemmed from work in several areas, which are discussed in this chapter:

development and standardization of common I/O interfaces

buffering techniques

protocol processing

streaming systems

module handling

processing in other protection domains

13
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2.1 Development of I/O Interfaces

One of the earliest I/O systems provided by a general multiprocessing operating

system appeared in Multics [FO74]. The interface was of particular significance due to the

use of opaque handles which provide abstract names for hardware resources and enable

redirection of input and output. The interface and corresponding implementation provide

access to hardware resources by user processes, and the interface has not changed drastically

since its inception.

With the creation of UNIX in the 1970s [ATT78], much of the I/O interface from

Multics was copied, with some function names changed. Over the years, the interface

remained largely unchanged.1 Additional functions were added with the integration of the

ARPA protocols in the BSD4.2 distribution [LJF83].

The original interface underwent further specification and became incorporated in

the POSIX 1003.1 standard [Ins88], which specifies an operating system interface borrowed

heavily from the experience with UNIX. Other popular commercial systems use a similar

structure. For example, in WindowsNT [Cus93], a file object includes service procedures

such as OpenFile, ReadFile, and WriteFile. OS/2 [DK92] provides similar

facilities.

The interfaces provided by these systems are very similar, differing primarily in

function name rather than operation performed. They each provide for the reading and

writing of I/O objects, along with low-level manipulations. They all provide movement

of data between devices and user processes, and do not address the need to establish data

paths which do not involve an intermediary user process.
1Minor changes include the adoption of the select call to permit multiplexingof I/O descriptors and the

mmap call to permit the mapping of device memory to user processes. These capabilities are used extensively
by display server processes.
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2.2 Buffering

I/O systems rely on buffers to hold data in transit and to help speed–match objects

which produce and consume data at different rates. The uses of buffering and types of

buffering available in current systems are detailed in Chapter 5. Buffering systems have

evolved with new device technology.

2.2.1 Buffering in UNIX

Early UNIX systems used buffers designed to accommodate character and block

oriented I/O devices. Character oriented I/O devices were generally attached by asyn-

chronous lines, and produced or consumed variable but small numbers of characters at

a time. Such devices included card readers, terminals, etc. Block I/O devices primarily

included tape and disk devices which were accessed with a fixed size block of some nominal

number of bytes (approx. 0.5KBytes).

With the addition of network protocol support in the kernel, the buffering system

had to be improved to accommodate variable-sized network packets. A more sophisticated

form of buffering called mbufs, specifically designed for the manipulation of packet data,

was created with 4.2BSD UNIX. Mbufs support a number of special manipulations required

of network protocol processing including prepending of headers and appending of trailers

and are found in most BSD-derived systems today. They have continued to evolve with the

advent of new networking protocols such as OSI.

The mbuf system incorporates functions to allocate and release mbufs, prepend

or append headers and trailers, reference-count data, and align buffers. The data storage

portion of an mbuf is either an entire page or individual chunks provided by the general

kernel allocator. Mbufs exist entirely in the kernel’s address space and are not pageable.

Data is copied between kernel-resident mbufs and free-form user process buffers as needed.

To provide a common data structure for all processing modules, Streams [Rit84]

includes a message block data structure with message buffers. Message blocks are a very

simple buffering scheme discussed in the original Streams design, and include a header
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describing a corresponding data buffer, a current read and write offset and maximum or

limits. The scheme was extended and slightly modified in SystemV [USL92] and Plan

9 [Pre90].

The original Streams buffering structure is similar to the buffering structures

present in the standard I/O package (STDIO) provided in conjunction with an ANSI

C Programming environment, and specified in the Language-Specific Services for the C

Programming Language chapter of the POSIX 1003.1 specification [Ins88]. In the Streams

case, message buffers are entirely kernel-resident and not visible to user processes. In

the STDIO case, I/O buffers are present entirely in user process space and not referenced

directly by the kernel.

2.2.2 Buffering Optimizations

The buffering schemes mentioned so far are address-space-local. That is, they

exist only within single address spaces and data transferred between address spaces is

typically copied. A number of efforts have focused on reducing the overheads associated

with copying. The copy problem is generally the high cost associated with moving data

between protection boundaries. The user/kernel protection boundary is a particularly

important special case.

The simplest way of avoiding copying is by utilizing shared memory. Memory

may be shared between address spaces, including the kernel’s. The unit of sharing is

typically a page, and data must be aligned and wired-down. Rendezvous is implemented

manually by the programmer. Synchronization primitives serialize access to shared data

when necessary. Most existing systems provide such capability (UNIX examples include

the SystemV shmat, shmget, shmdt interface and the BSD mmap interface).

A number of efforts attempt to optimize performance and provide a higher level

interface than system pages. In the DASH message passing system [Tzo91], a virtual

address range is reserved in all address spaces for the purposes of I/O data manipulation.

The system has move semantics, meaning data is moved from one address space and into

another; the initial address space relinquishes a reference to the data. Such movement
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requires unmapping in the sending address space and mapping into the destination address

space by MMU table manipulation. Generally, such manipulations also require a TLB flush.

The V Kernel [Che88] also implements such a scheme. The advantage of the scheme is the

relative cost of updating page tables versus copying. For messages of reasonable size, page

table updates are significantly cheaper than copying data. Both the DASH and V systems

employ a buffering scheme which is visible to both kernel and user address spaces.

An alternative to move semantics is copy semantics, in which a sending domain

retains at least a logical copy of transferred data. A virtual copy is performed by duplicating

page mappings for the same physical space in multiple virtual address spaces and setting

page permissions to read-only rather than read/write. When a write is performed to the pages

in question, a write fault occurs, and a copy is performed. The scheme is known as copy-

on-write and is used extensively in Mach [ABB 86] and in its predecessor, Accent [FR86].

In the fbufs approach [DP93], buffers are made immutable, meaning only the

originator of a buffer may have write-access to it. Given immutable buffers, there is no

performance advantage of maintaining move rather than copy semantics. Copy semantics

are implemented by sharing buffers. Further optimizations improve fbuf performance by

elimination of zero-filling pages for trusted protection domains and assuming a received

buffer is volatile. A volatile buffer may be asynchronously modified (this assumption relaxes

the need to update page table entries and software VM maps in the sending domain).

In container shipping [PAM94], inter-domain transfers with move semantics are

supported by the notion of encapsulating data in a sequence of pallets (contiguous virtual

memory addresses). Data is mapped into a receiving domain only when requested by the

application.

2.2.3 Buffering Summary

The early buffering systems mentioned here were created initially for simple

storage of data while in transit from one location to another. Further developments included

the incorporation of scatter/gather capabilities to accommodate variable-sized data objects

(e.g., network packets). In such cases, the user processes control their own buffers, resulting
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in a copy across the user/kernel boundary.

Recent work with respect to buffering addresses the performance problems asso-

ciated with the data movements implied by separate buffering mechanisms. These systems

all share the common goal of reducing overheads, and also share the disadvantage of having

to re-implement user programs in order to take advantage of the improved buffering regime.

In addition, most of these systems all include the implicit assumption that the buffering sys-

tem’s purpose is to move data to and from user address spaces, with the possible exception

of the container shipping scheme, which allows the application to decide.

2.3 Protocol Processing

IPC performance problems due to excessive copying are felt nowhere more

strongly than in the processing of network protocols. The reason is simple: the two

primary devices which bear the I/O load on most present–day systems are the network and

disk subsystems, and the performance of network interfaces has tracked the performance of

CPUs more closely than disks. Furthermore, manipulation of data buffers is considerably

more complex for processing network packets.

The data manipulation problem (primarily data copying and checksumming com-

putations) has been discussed repeatedly, including [CJRS89, DWB 93]. Much of the

recent work in these areas have been the creation of methods to avoid intermediate (kernel-

level) buffering.

The Afterburner [DWB 93] card is a network-independent network interface

card built by HP Bristol based on Van Jacobson’s “witless” network interface design. The

idea was to build a dumb and fast interface with substantial on-board buffering and perform

protocol operations on packets buffered in the network interface. The initial prototype

was an FDDI interface called Medusa [BP93]. Afterburner was built after the success of

Medusa. This system uses a single copy protocol stack: data is copied only once from

network adapter to application address space. Checksum computation is included with the

copy at no additional cost. This system has the advantage of requiring modification of only
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the operating system network buffering code, and does not imply re-coding of existing user

applications.

Another approach which eliminates intermediate buffering to improve application

performance for network protocol processing is discussed in the context of fast host interface

design [ST93]. In this system, pages are mapped to and from user address space and are

made accessible to the network interface. Earlier systems used similar approaches to

optimize network transfer [JZ93, SB90] and local RPC [BALL90].

The efforts in protocol processing generally attempt to optimize the data path

between network interface and user application. Issues include the proper type of buffering,

modifications to the user interface, and partitioning of functionality and layering. The

benefit of outboard processing remains an unresolved issue. The problems and approaches

to network protocol processing with respect to data manipulation closely mirror the issues

involved in buffer management discussed in the previous section. Once again, the provision

for interconnection of data producer and consumer objects below the application is not

available.

2.4 Streaming Approaches

A class of techniques known as streaming most closely resembles the design of

PPIO. Streaming attempts to “short-circuit” a data path by interconnecting data sources and

sinks below the application layer. Several types of streaming are discussed in [DAPP92],

where the authors conclude low-level streaming is precluded because applications should

be given access to continuous media (CM) data.

2.4.1 Types of Streaming
The authors of [DAPP92] identify four types of streaming:

Hardware

DMA-DMA

OS Kernel
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User Level

The following four paragraphs summarize their observations and criticisms.

Hardware streaming refers to the ability to interconnect data sources and sinks at

the level of the system bus, avoiding any operations that bring I/O data into main memory.

This type of streaming is described by the authors to lack integration with workstation

computer systems. Although hardware streaming precludes the direct processing by the

CPU on I/O data, sufficiently sophisticated adapters have been implemented to handle data

manipulations (see below).

DMA-DMA streaming refers to the inclusion of system memory in the data transfer

path, but exclusion of processing by the main CPU. In such a system, conventional I/O

devices supporting scatter/gather DMA can be used, and the authors acknowledge that

generic devices could be used for supporting multimedia devices. This type of streaming

architecture passes I/O data through the main memory system, and is likely to encounter

a bottleneck at that point. Both hardware streaming and DMA-DMA streaming offer the

potential advantage of not filling the CPU’s data cache with I/O lacking locality.

OS Kernel Streaming refers to the DMA-DMA streaming model mentioned pre-

viously, but with the addition of software processing within the kernel’s protection domain.

I/O data passes through the CPU’s data cache, which is advantageous for I/O data with

locality and disadvantageous otherwise. To minimize manipulations and improve memory

performance, Integrated Layer Processing (ILP) is used along the data flow. Although

this approach offers general programmability across the data flow, processing must be

performed in the protection domain of the operating system’s address space.

User-Level streaming offers the greatest flexibility of data manipulation in the

data flow as compared with the other techniques. Data flows through the kernel domain,

through one or more user domains, and back through the kernel on output. All performance

issues present in OS Kernel streaming are present with User Level streaming, with the added

overhead of crossing protection domains while attempting to provide good performance.

The authors begin from this point to develop a buffering method which is understood by

both user and kernel software. This work eventually culminated later in the fbufs [DP93]
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design mentioned previously.

While the streaming approaches do suffer some of the problems the authors

have illustrated, several observations can be made. First, the streaming approaches are

not mutually exclusive. A system can make use of low-level (hardware) streaming when

available and little intermediate processing is required, but may use higher-level streaming

when appropriate or when processing is required. In addition, processing need not be done

only within the user protection domain on the primary CPU.

The PPIO design can make use of low-level streaming when devices supporting

such functionality are available. Data transformations to be introduced in the stream are

first coded as algorithms and compiled for execution either in the main CPU or in an

external attached processor. Hardware-streaming-capable devices are downloaded with

user-provided code. Otherwise, OS streaming is used. The interface used in PPIO for

introducing processing modules into the kernel’s address space (or to devices) is discussed

in Chapter 3.

2.4.2 Examples of Streaming Systems

As discussed above, streaming can take place at a number of different software

levels of a system in addition to directly between hardware devices if appropriately designed.

Although streaming in general has not received much attention in the literature, there a

number of hardware examples and a few software examples. The following two sections

present examples of hardware and software systems, respectively, which employ streaming.

Hardware Examples

Several hardware systems have been implemented with support for some variety of

hardware streaming. One such system is the SCSI [NCR90] bus used by most workstations

and Macintosh2 computers. Computers supporting SCSI (hosts) are equipped with a host

adapter which provides the translation between the computer’s native bus and the SCSI

standard bus. Initiators are responsible for initiating a data transfer and act as a master with
2Macintosh is a trademark of Apple Computer Inc.
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respect to targets. Host adapters typically operate as initiators, requesting I/O for a number

of targets.3 Most peripherals are targets, and respond to requests from initiators. Peripherals

supporting the SCSI Copy operation may achieve inter-device hardware streaming between

an initiator and target.

IBM’s MicroChannel bus [Bow91] represents another popular bus supporting

streaming capability. This bus defines peer-to-peer transfers as occurring between two bus

masters. One master acts as a controlling bus master, the other a slave. The interface for

controlling peer-to-peer operation is known as the Subsystem Control Block Architecture,4

and is not technically part of the Micro Channel Architecture. The capability has been

tested at the University of Pennsylvania [ST93] within the AURORA [CDF 93] project.

Moving from the bus level to the system level, the notion of streaming has also

been implemented successfully in the Auspex NFS file server product [NFE92]. This

system embraces the notion of functional multiprocessing (FM). In FM, various specialized

processing boards are attached by a VME bus modified for high performance. Data flows

between processing boards across the VME backplane, and is not staged intermediately

in system memory. A conventional UNIX-based workstation attaches to the VME bus to

provide control—I/O data does not ordinarily pass through its memory or CPU.

Another architectural approach to system construction is known as the desk area

network (DAN) [HD91, D.93]. This work is being undertaken at the Unversity of Cambridge

London within the Pegasus project [LDS92]. The DAN employs an ATM switch fabric to

interconnect devices on a user’s desktop as an alternative to the interconnection of intelligent

devices on a traditional system bus. Attached devices offer a range of programmability and

are managed by an ATM-attached processor. The approach is also being investigated by

researchers at MIT [AHIT94].
3Host adapters may also act as targets when more than one host is connected together on a SCSI bus (a

configuration supported by SCSI, but not often used).
4SCB Architecture is a trademark of IBM
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Software Examples

The CTMS system [PCMI91] supports multimedia applications on a UNIX system

base. Recognizing the problem with multiple data copies, theioctl system call is modified

to support the ability to pass file descriptors from one device driver to another. The resulting

interface supports the ability to create inter-device-driver transfers. Essentially it supports

either DMA-DMA streaming or OS Kernel streaming, depending on the types of devices

used. Unfortunately, this implementation is specific to the Token Ring Device drivers the

authors worked with, and the interconnection architecture is described only briefly in one

paragraph.

Another system which uses a streaming concept similar to that of CTMS is

the Cross-Bar-Interface (CBI) [Tho93], built by Los Alamos National Laboratory for

constructing wide-area HIPPI networks. The device is a two-board set, each consisting of

two HIPPI interfaces, control logic, and buffering, and is controlled by an EISA-bus PC

running BSD/386.5 Among other functions, the CBI can be used for offloading network

protocol processing for hosts not well-equipped for protocol processing such as the Thinking

Machine CM-2. Such hosts communicate with the CBI using a simple protocol called SHIP.

The BSDI system running on the PC includes a construct called a looping socket. The

looping socket is used to interconnect SHIP sockets with TCP/IP sockets, thus affecting a

protocol translator which is controlled by a user process but whose implementation is in

kernel space.

Discussion

Streaming has been implemented in a number of hardware systems and a few

software systems. Although the Auspex product has been a reasonably successful commer-

cial product and represents an exception, hardware streaming capability remains largely

un-utilized, most likely due to the lack of software and the lack of hardware with enough

capability to both perform inter-device transfers and perform enough processing to allow

data to be mutually understood between more than one device.
5BSD/386 is a trademark of Berkeley Software Design Inc. (BSDI).
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The software efforts at streaming have been of an ad hoc nature, being used in

specific circumstances with specific devices. These systems have not taken a new approach

to I/O as PPIO aims to do, but rather have optimized data paths of particular interest to

the developers. PPIO breaks with the traditional goals of I/O systems by focusing on

inter-device (object) streaming support as opposed to conveying data between application

and peripheral devices.

2.5 Modules and Protection

Its initial goal of PPIO was to support the interconnection of I/O devices through

the operating system using streaming techniques. Such a system lacks the ability to perform

any intermediate processing and thus would be inappropriate for many applications. By

incorporating kernel-managed software processing modules along the data path from data

source to sink, processing can be performed on I/O data without the need to invoke the

application. Furthermore, module processing may take place outboard, on specialized

processors that are locally attached, or possibly on other devices which are network-

accessible.

Processing modules are described in Chapter 4. If module code is permitted to be

introduced into the operating system by user processes, some mechanism should address

the issue of security. Specifically, execution of errant or malicious module code could

cause failure of the entire system. Section 4.3.2 of Chapter 4 addresses these concerns and

describes related work in this area.



Chapter 3

PPIO Interfaces

This chapter is concerned with the interfaces used to interact with PPIO. The

user interface represents the programming interface encountered by persons wishing to use

the PPIO facilities from a user program. The system interface refers to the interface used

by developers of system-level code needing to control or manipulate PPIO objects. The

interface may also be divided into the portion relating to the establishment of flows and

the portion relating to the manipulation of processing modules. Each portion has a user

and system component. The overall PPIO internal structure and interfaces are depicted

graphically in Figure 3.1.

3.1 User Interface

The user interface to PPIO provides the capability of establishing and tearing

down associations, adjusting the rate at which data flows between sources and sinks, and

specifying intermediate processing modules. The user interface consists of two primary

parts: functions and descriptors. Descriptors are opaque handles used by user processes to

identify kernel-resident objects.

25
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Figure 3.1: Location of interfaces in PPIO system.

3.1.1 Descriptors

Data sources and sinks must be identifiable to entities both at the user and system

level. Most systems provide both a name (convenient for humans) and a handle ordescriptor

to refer to objects capable of performing I/O. Although names are convenient for user

processes establishing initial associations between handles and accessible objects, they are

generally not used beyond the initial association due to performance degradation caused

by having to interpret character strings on each access. Most systems provide an abstract

descriptor which refers to an object upon which I/O operations can be performed.

Descriptors are opaque to user processes, and refer to objects not directly accessi-

ble to user processes. Instead, they refer to underlying objects maintained by the operating

system. Possession of a descriptor implies some set of access privileges to the underlying

object. Common access privileges include read and write, and may also include append,

truncate or change owner.
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3.1.2 User Interface Functions

The user interface functions provide for user-level manipulation of associations

and modules. This section describes the functions used to manipulate associations.

The splice Function

The PPIO architecture relies on the creation of kernel-maintained associations

between data sources and sinks. User processes specify the source and sink endpoints of an

association and the operating system manages data transfers between them. The function

of greatest importance is called splice, and it is the primitive used by user processes to

create associations. Using C-like notation, it is called as follows:

/*
* "file_descriptor"s refer to I/O objects and
* "splice_descriptor" refers to the association
* between them. In many systems these will
* be equivalent types
*/

file_descriptor dsrc, dsink;
splice_descriptor dnew;

dnew = splice(dsrc, dsink);

if (dnew == ERROR) {
/* handle error */

}

/*
* now dnew refers to the association
* between dsrc and dsink
*/

In the above code fragment, dsrc and dsink represent descriptors referencing

I/O objects. Dsrc and dsink refer to the underlying source and sink objects, respectively.

After a successful completion of the splice call, dnew represents a handle of an asso-

ciation or “splice” and will be referred to as the splice descriptor. No data is flowing at



28

this point; the splice call is used to establish the association and allocate any necessary

kernel-resident data structures.

Once an association is created with splice, it may be manipulated in a number

of ways. For generality, manipulations are performed by writing control messages to the

splice descriptor. Thus, a sequence of write operations on the splice descriptor may be

used to change the state of the splice, and read operations may be used to gather status.

Performing a close operation on the splice descriptor removes the association from the

system.

Controlling an Association

Control information relating to an association is exchanged between user and

kernel environments by means of a splice control message data structure. This structure is

represented in C-like notation as follows:

struct SPLICE_CTRL_MESSAGE {
unsigned int op; /* operation */
int increment;
int cnt;
void (*handler)();
unsigned int stat;

};

#define SPLICE_OP_STARTFLOW 0x01
#define SPLICE_OP_STOPFLOW 0x02

#define SPLICE_INCREMENT_DEFAULT -2
#define SPLICE_INCREMENT_INFINITE -1
#define SPLICE_INCREMENT_NOOP 0

#define SPLICE_HANDLER_NONE ((void (*)()) -2)
#define SPLICE_HANDLER_DEFAULT ((void (*)()) -1)
#define SPLICE_HANDLER_NOOP ((void (*)()) 0)

/* see section on Association Descriptors */
#define SPLICE_STAT_ERROR 0x01
#define SPLICE_STAT_ACTIVE 0x02
#define SPLICE_STAT_WANTED 0x04
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This structure provides a consistent way of manipulating the condition of a splice. Oper-

ations are specified in the op field by specifying one of the operations (defines beginning

with SPLICE OP ). The SPLICE OP STARTFLOW operation indicates the user process

wishes data to begin flowing across the association. SPLICE OP STOPFLOW indicates

the converse and is used to stop the flow of an association. New operations may be added

as needed.

The increment field specifies the number of bytes to transfer across an associ-

ation before returning control to the calling user application. When control is returned, data

flow is stopped. A SPLICE OP STARTFLOW must be executed to restart data flow. The

increment represents an important concept in PPIO, and refers to the amount of data the

user process is willing to have transferred by the operating system on its behalf. In effect,

it specifies the level of delegation the user process is willing to give to the system. Specify-

ing SPLICE INCREMENT DEFAULT indicates the system should choose an appropriate

increment. This will generally be a buffer size deemed convenient by the operating system.

SPLICE INCREMENT NOOP indicates the increment should not be changed. Specifying

SPLICE INCREMENT INFINITE indicates to the system the user process is willing to

delegate the entire data flow to the operating system. Data will continue to flow between

a source and associated sink until EOF is reached on the source, an error occurs, or the

calling process is interrupted.

Associations operate synchronously be default, blocking the user process un-

til increment bytes of data have been transferred. An association may also operate

asynchronously by returning control to the calling process immediately, and optionally

notifying the application by way of an upcall [Cla85]. The handler field is used to

specify the entrypoint of the routine in user-space to be invoked during the upcall. Specify-

ing SPLICE HANDLER DEFAULT indicates the system should execute a default handler,

which should raise an error condition. SPLICE HANDLER NONE indicates no handler is

to be used, thus effectively disabling the upcall. SPLICE HANDLER NOOP indicates the

system should not alter the present handler entrypoint.



30

Given an existing association (created by a call to splice), the standard write

call may be used to control the association. Here is a simple example:

/* dnew is a splice descriptor */

struct SPLICE_CTRL_MESSAGE sm;

sm.op = SPLICE_OP_STARTFLOW;
sm.increment = SPLICE_INCREMENT_DEFAULT;
sm.handler = SPLICE_HANDLER_NONE;

if (write(dnew, &sm, sizeof(sm)) != sizeof(sm)) {
/* handle error */

}

In this example, the control message sm is filled in with the instruction to com-

mence flow on the splice with the default increment. SPLICE HANDLER NONE in

the handler field indicates no routine should be called upon I/O completion. This is a

synchronous splice; providing a handler would not be useful (and would not be used).

When a SPLICE OP STARTFLOW operation is given to a splice, the write

call initiating the control message blocks until an amount of data equal to the increment

is transferred, EOF is reached, or an error occurs. In the case of an asynchronous splice,

the write call returns immediately, and the specified handler is invoked when the amount

of data specified by the increment is reached, EOF occurs, or an error is encountered. An

asynchronous splice is illustrated below:

/* dnew is a splice descriptor */

struct SPLICE_CTRL_MESSAGE sm;
void splice_handler();

fcntl(dnew, F_SETFL, FASYNC); /* set async flag */
sm.op = SPLICE_OP_STARTFLOW;
sm.increment = SPLICE_INCREMENT_DEFAULT;
sm.handler = splice_handler;
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if (write(dnew, &sm, sizeof(sm)) != sizeof(sm)) {
/* handle error */

}
...

splice_handler()
{

static struct SPLICE_CTRL_MESSAGE continue_msg = {
SPLICE_OP_STARTFLOW,
SPLICE_INCREMENT_DEFAULT,
splice_handler

};
static int sz = sizeof(continue_msg);
if (write(dnew, &continue_msg, sz) != sz) {

/* handle error */
}

}

In this example, the fcntl call changes the splice to perform asynchronously.

The write call in the main section returns immediately, and when the default increment

number of bytes have been transferred between the data source and sink, splice handler

is invoked. At this point, the data flow is interrupted. A subsequent call to write, this

time in the handler, causes another default increment number of bytes to flow through the

splice. The user may specify an infinite increment (SPLICE INCREMENT INFINITE),

in which case the splice will continue moving data until an error or EOF is reached.

Status of an Association

To gather status from a splice, the read call may be used on the splice descriptor.

It operates using the same SPLICE CTRL MESSAGE structure used by the write call. It

is called as follows:

/* dnew is a splice */

struct SPLICE_CTRL_MESSAGE sm;

if (read(dnew, &sm, sizeof(sm)) != sizeof(sm)) {
/* handle error */

}



32

printf("splice status: 0x%x\n", sm.stat);
printf("bytes transferred: %d\n", sm.cnt);

In this example, the sm.stat field indicates the status of a splice as described as

given above. The status field is an array of bits indicating various conditions, and may be

extended as needed. Active splices have data flowing across the association, as indicated

by the SPLICE STAT ACTIVE bit being set. Splices which have encountered an error

have the SPLICE STAT ERROR bit set, and those which have other processes or threads

awaiting their completion have the SPLICE STAT WANTED bit set. Status bits may not

be modified by user programs; they are read-only.

The sm.cnt field indicates the number of bytes which have been transferred

across the association thus far. This field may be used by applications to verify or inspect

the progress of an active association.

3.1.3 Module Manipulation

Associations may be created using the interface provided in the previous section.

Creation of an association does not imply any data transformation across the association,

although it may imply conversion between buffering types. To provide the flexibility of

incorporating processing between a connected source and sink, processing modules may

be introduced between an associated source and sink. As mentioned previously, the PPIO

interface for manipulating processing modules is based heavily on Streams (originally

proposed by Ritchie in [Rit84]). Streams has become a de-facto standard since the release

of ATT UNIX SVR3. Its most recent description may be found in the ATT UNIX SVR4

documentation [USL92].

Although the entire Streams interface will not be included here, the details relevant

to PPIO shall now be described. In Streams, each processing module is a kernel-resident

set of two queues, and a set of interface functions. The modules form a pipeline connecting

drivers to user processes. Modules with fan-in or fan-out exceeding one are known as

multiplexors. Modules are added or removed from a pipeline in a LIFO fashion, and are
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thus known as stackable modules. The “stack” is maintained such that the module closest

to the user process is considered the topmost module.

To be effective in supporting data manipulation in PPIO, the user interface for

manipulation of modules must provide the following functions:
pushing a module on top of a stream

removing a module from the top of a stream

(de)associating multiplexors with neighboring modules

The method for adding a module to the top of the stream “stack” is accomplished by the

I PUSH ioctl call:

file_descriptor fd;

if ((fd = open("device_name", O_RDWR)) < 0) {
.. error ’device open’ failed ..

}

if (ioctl(fd, I_PUSH, "module_name") < 0) {
.. error ’push’ failed ..

}

The method for removing the topmost module from the stack is accomplished by the I POP

ioctl call:
/* fd is a stream descriptor */
if (ioctl(fd, I_POP, NULL) < 0) {

.. error ’pop’ failed ..
}

The methods for establishing relationships between streams and multiplexors is consider-

ably more complicated. The I LINK ioctl call is used to add streams to one side of a

multiplexor, and the I UNLINK ioctl call is used to uncouple streams from a multiplexor.

The reader is referred to the Streams Programmer’s Guide [Sun92] (Chp. 10), for more

details on the use of multiplexors.

Although the specific Streams interface is somewhat UNIX-specific (due to the

use of the ioctl call above), it is easily generalized by the addition of appropriate library

or system calls to other operating system environments.
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3.1.4 Dynamic Loading

Dynamic loading refers to the ability to introduce code modules into a protected

address space. It has been used for selectively loading device drivers based on what

hardware is available. With respect to PPIO, dynamic loading provides the ability to

introduce code compiled and linked in user space into the running operating system’s

protected address space. Several current operating systems support dynamic loading,

including Linux’s modules, OSF’s ldr xload interface, SunOS’s modload facility and

AIX’s sysconfig subroutine [IBM92]. Although many systems provide this capability,

no standard presently exists for the user interface.

The kload Function

The functionality required by PPIO is similar to that provided by many of the

systems mentioned above. To support push and pop operations on modules, PPIO requires

the following capabilities:

load a module into the kernel’s address space

name the module

return a reference for the module

unload a module

In PPIO, the following call, kload, provides the needed support:

mod_descriptor md;

md = kload("module_name", "location of binary containing code");
if (md < 0) {

... error loading ...
}

close(md); /* unloads module */

In the example above, kload is used to load user-level code into the operating

system environment. Note that with appropriate hardware support, kload may actually
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load code to an attached peripheral device rather than the kernel’s address space. The

descriptor md is a module descriptor and is used to refer to the particular module just

introduced into the operating system.

The second argument tokload specifies the implementation code for the module

being loaded. If the second argument is NULL, kload searches the current state of the

operating system for the named module. It will return a valid module descriptor provided

the named module has already been loaded either by a previous call to kload, or initially

at operating system build time (as would be the case for conventional Streams modules, for

example). If the second argument is non-NULL, it specifies a file system object (e.g., file

name) indicating which code file should be loaded into the operating system. This method

parallels that used by the existing systems mentioned above.

The module descriptor works similarly to the splice descriptor previously de-

scribed in that control messages may be exchanged between kernel-resident modules and

a controlling user process by applying read and write calls to the module descriptor.

Modules in PPIO do not generally have as long a lifetime as modules in conventional

Streams, and are thus expected to be moved into and out of the operating system more

frequently. Modules and associations introduced by a process are removed prior to process

exit completion.

3.1.5 Combining Splice, Streams, and Modules

The previous sections have described the user interfaces to PPIO, the stacking

functions of Streams, and the kload interface used to load processing modules into the

operating system. These interfaces may be used in combination by applications to create

data paths managed by the operating system which includes in-band processing but does

not need to pass through the application’s address space. The following example illustrates

how a user process might use PPIO to create a data flow between source device

and sink device which employs an intermediate encryption processing module (error

checks have been removed for clarity) :
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#define MOD_NAME "des_encryption"
#define MOD_FILE "/usr/kmodules/crypt_des.o"

descriptor sourcedev, sinkdev;
mod_descriptor mdesc;
splice_descriptor sdesc;
SPLICE_CTRL_MESSAGE sm;

static char mykey[] = "encryption_key";

/* obtain handles to source and sink devices */
sourcedev = open("source_device", O_RDONLY);
sinkdev = open("sink_device", O_WRONLY);

/* load the module of interest */
mdesc = kload(MOD_NAME, MOD_FILE);

/* push the module on the destination device’s stack */
/* (could also have used source device’s */
ioctl(sinkdev, I_PUSH, MOD_NAME);

/* interact with module-- in this case, provide crypto-key */
write(mdesc, mykey, sizeof(mykey));

/* create association between source dev and sink stack */
sdesc = splice(sourcedev, sinkdev);

/* fill in splice descriptor, used to start data flow */
sm.op = SPLICE_OP_STARTFLOW;
sm.increment = SPLICE_INCREMENT_INFINITE;
sm.handler = SPLICE_HANDLER_NONE;

write(sdesc, &sm, sizeof(sm));

In the example above, the source and sink devices are opened and are referenced by the

sourcedev and sinkdev descriptors, respectively. The executable image of the encryp-

tion processing module is contained in the file/usr/kmodules/crypt des.o. It is in-

troduced into the system by the call tokloadwhich names the module (“des encryption”).

In cases where the module is precompiled into the operating system, the first argument

to kload is the name of the precompiled module, and the second argument is NULL. A

successful call to kload is indicated by a positive return value.
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At this point, the user process contains descriptors for the source and sink devices,

plus the processing module. The “des encryption” module becomes associated with the

sink device by the I PUSH ioctl call. In this case, the module could have been pushed on

either the source or sink device’s descriptor. The encryption module is an example of a

module which requires control information to operate; it requires a secret key to perform

encryption. Control information is passed to the module by way of the standard write

call applied to the module descriptor. After successful completion of the write call,

the application calls splice to connect the source and sink descriptors together. After

the splice is created, a write operation on the splice descriptor using the STARTFLOW

operation commences data flow. Data flows from the source device, through the splice,

through the encryption module, and out to the sink device. The infinite increment in the

example implies the write will block until data flow is complete.

3.2 System Interface

The PPIO system interface refers to the programming interface used by modules

executing within the operating system’s protected address space.1 The purpose of the

interface is to address two primary goals:

1. provide inter-module data flow

2. provide control and status to user processes

The system interface is designed based on an amalgam of elements taken from the original

Streams design [Rit84] as extended by Plan 9 [Pre90], as well as the present UNIX device

driver interface.

3.2.1 Streams Modules in Plan 9

In the case of Streams modules, the Plan 9 Queue structure contains an external

interface consisting essentially of only the put routine. The entire structure is given
1Strictly speaking, these interfaces could also exist in other user processes for systems employing user

level servers for OS services. In addition, such interfaces could be used for modules executing in peripheral
devices (i.e. outboard processors).
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in [Pre90] as follows:

typedef struct Queue Queue ;
struct Queue {

Blist; /* linked list of blocks */
int nb; /* # blocks in queue */
Qinfo *info; /* line discipline defn */
Queue *other; /* opposite direction */
Queue *next; /* next queue in stream */
void (*put)(Queue*,Block*); /* "put" procedure" */
Rendez r; /* flow ctl rendezvous point */
void *ptr; /* queue’s private data */

};

The structure given here for Plan 9 includes enough fields to invoke the “put”

procedure, discover the next downstream module, discover the peer “opposite-direction”

module, maintain a block list, maintain a link to an object common to all modules in a

Stream (the info field), deschedule and restart a module (the r field), and keep private

data. The external interface of this structure is simply the put procedure, although the

next, nb, and possibly Blist fields may be of interest to neighboring modules or the

rest of the operating system.

3.2.2 UNIX Device Driver Interface

Typical current UNIX systems provide two primary interfaces to device drivers,

depending on the type of device and abstraction being supported. Character devices

represent the bulk of devices, including serial lines, (raw) disks, multimedia devices,

etc. These devices are typically accessed directly by user processes. The other primary

category of devices are network devices. These devices are typically not read from or

written to directly by user processes, but instead communicate with kernel-resident protocol

implementations.2

The UNIX interface to character device drivers is given by a structure known as

cdevsw. This structure is given as follows:
2The other type of device drivers are for block devices. These device drivers employ a caching buffer

system and are used primarily in support of file systems.
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struct cdevsw {
int (*d_open)(); /* open driver */
int (*d_close)(); /* close driver */
int (*d_read)(); /* read data */
int (*d_write)(); /* write data */
int (*d_ioctl)(); /* control device */
int (*d_reset)(); /* reset device (if used) */
int (*d_select)(); /* await I/O */
int (*d_mmap)(); /* map to user space */

};

Although the structure listed above is visible in kernel address space only, the

functions supported are very similar to the I/O calls available to user processes in most

UNIX systems (open, close, read, write, ioctl, select, mmap).

As mentioned above, drivers for network devices are distinguished from character

devices because of the way they are accessed by user processes. They use the following

structure:

struct ifnet {
char *name; /* intf name */
...
/* procedure handles */
int (*if_init)(); /* init routine */
int (*if_output)(); /* output routine */
int (*if_ioctl)(); /* ioctl routine */
int (*if_reset)(); /* bus reset routine */
int (*if_watchdog)(); /* timeout routine */
...

};

The first obvious difference between these two structures is the omission of the

close, read, select, and mmap routines in the network interface. The close

routine is not used because user network interfaces are not initialized or freed as a result

of user process action. Instead, interfaces are typically initialized at system startup time

(at which time the if init routine is called) and are not cleared (thus no need for a

d close routine). The read routine is not present because of the active output nature of

network devices. Such drivers are invoked via an interrupt thread (upcall), and instead call

the “input” routine of the appropriate higher-layer protocol. The d select and d mmap
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routines are not present because these are present only in support of the corresponding user

process calls select and mmap.

3.2.3 The PPIOModule System Interface

By combining attributes of the interfaces described above, the PPIO module

interface is constructed as follows:

struct module_extern_interface {
int (*m_put)();
int (*m_open)();
int (*m_close)();
int (*m_ctlread)();
int (*m_ctlwrite)();
int (*m_select)();

};

struct module_internal_state {
struct module_extern_interface *next; /* next module */
Module_ctrl_block mcb; /* thread state */
Blist bl; /* list of blocks */
int nb; /* # bytes here */
int nmsgs; /* # messages here */

};

This interface addresses the two primary goals indicated above. Inter-module

simplex data flow is achieved by calling the put procedure from an adjacent module.

Note that there is no “opposite direction” module reference due to the simplex character of

modules in PPIO. Control of modules is provided to user processes in several ways.

The m open routine is invoked as a result of a user process’ call to kload. This

routine is used to initialize any necessary data structures and notify the operating system

of the presence of the module. The m close routine is invoked when the user process

executes a close call on the module descriptor. The result of a close call on a module

descriptor is the removal of the specified module from any active data flow. Any module

resources may be released if the system is loaded, or the module may remain in the system

in hopes that it may be re-used in the future. This is known as module caching.
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The other module interface routines deal with modules which have already been

introduced into the operating system and initialized. The m ctlread and m ctlwrite

calls support exchange of control information between kernel-resident modules and applica-

tions running in user space. As illustrated above, a module-specific protocol is established

between user-space caller and the referenced module. A user’s write of a control mes-

sage results in the execution of a m ctlwrite function in the referenced module. The

module is responsible for interpreting the message provided by the user. A user’s read

call results in the execution of a module’s m ctlread function, and is used to provide

status information originating at the module and destined for the user process. In support

of a user process select call, the m select call is used for synchronous multiplexing

of module descriptors. Since module descriptors are only used for the exchange of control

information, applying select in this fashion can be used to multiplex control information

to/from multiple modules.

3.2.4 The PPIO Driver Interface

The driver interface is a system interface used to support the PPIO system and

to program devices for I/O operations. Device drivers generally represent a substantial

fraction of the code comprising modern operating systems, and are generally not easy to

modify, write, or rewrite. PPIO is conceived to be integrated with an already-existing I/O

subsystem, and therefore this section will deal with those requirements PPIO makes of

device drivers without encouraging an entirely new driver architecture.

Drivers are generally divided into two sections, the top half and bottom half.3 The

top half is invoked synchronously, usually on behalf of a currently-executing user process

or thread. The bottom half is invoked asynchronously, and is generally an upcall which is

not necessarily related to the currently-executing user process.
3This terminology is common to both OS/2 an UNIX operating system, and possibly others.
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Upcalls and Demultiplexing

Upcalls initiated due to a device interrupt must be demultiplexed to determine the

destination of data which has been acquired during an I/O operation (e.g., data acquired as

the result of a read operation). Requested I/O operations are typically encapsulated in a

data structure which identifies the destination of the I/O data. In addition, the structure may

contain a handler which is invoked to complete the upcall. For example, the UNIX buf

structure is used to perform block-oriented I/O operations to disk:

struct buf {
... linked list fields ...
long b_flags; /* too much goes here to describe */
long b_bcount; /* transfer count */
long b_bufsize; /* size of allocated buffer */
...
daddr_t b_lblkno; /* logical block number */
daddr_t b_blkno; /* block # on device */
...
struct proc *b_proc; /* proc doing physical or swap IO */
int (*b_iodone)(); /* function called by iodone */
...

};

In this example, the buf structure includes meta information about a disk block

used when I/O is performed on a buffer. The link fields are used when buffers are linked

together in a hash table using chaining, which forms the UNIX buffer cache. Write I/O is

generally initiated after a user process request by a mechanism known as delayed write.

Delayed write attempts to keep disk blocks cached under the expectation they will be

modified again before a physical disk I/O is performed.

When physical I/O is performed on a block, the b iodone function is invoked

upon completion. In the case of the buffer cache, I/O completion may signal the need to

awaken a blocked user process and perhaps free some data structure locks. There is no

provision for completing the upcall in such a way as to schedule a corresponding downcall.

In most systems, the b iodone handler does no noteworthy work.

The example illustrates one mechanism which may be used to introduce I/O

demultiplexing. In this case, demultiplexing is dynamic in that a different routine may be
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called on a per-buffer basis by modifying theb iodone field. In the case of UNIX network

protocol implementation the demultiplexing is static because incoming network packets are

delivered to a fixed set of queues, based on a type field included in packet headers. For

PPIO, a device driver’s upcall must ultimately result in a lookup to determine whether an

association is present for the data that triggered the upcall. By providing a reference in each

I/O request, the required demultiplexing is easily accomplished.

Code Download

A unique characteristic of PPIO is its capability to take advantage of devices

which support outboard processing to avoid data movement through main memory. When

such devices are available, they must be programmed in such a way as to interact directly

with their peers over a shared system bus. Such devices can be PPIO sources or sinks,

or can be specialized processors which implement module functions. In either case, such

devices execute code provided by the operating system or specified by user processes.

The user interface described in Section 3.1 remains fixed whether code modules

are executed in the kernel’s address space or in an external device. The kload call results

in a call to the module’s open routine, which is responsible for causing its own executable

image to be loaded into the appropriate device. The interface used to accomplish this

loading is specific to whichever operating system environment is used to implement PPIO.

In the case of UNIX, the addition of a new ioctl for those devices supporting code

download would require minimal modification to existing device drivers.



Chapter 4

PPIO Processing Model

This chapter describes the PPIO processing model. Section 4.1 provides the oper-

ating system concepts and background necessary for understanding the PPIO architecture.

Section 4.2 describes the processing and flow control algorithms employed to construct

inter-object data flows, and Section 4.3 describes the execution environment for processing

modules.

4.1 Definitions and General Concepts

This section reviews the essential operating system abstractions and objects used

in the PPIO design. First, data sources and sinks are described, followed by processing

abstractions. A discussion of flow control and its effects concludes the section.

4.1.1 Sources and Sinks

Data moved within an operating system is described as being originated at a data

source and consumed at a data sink. The terms source and sink are abstract descriptions,

and may be applied equally to either hardware or software entities. Movement of data

from a source to an associated sink is generally facilitated by some device with processing

capability; common examples are CPUs (for copying data) and DMA units (used to stream

data between system memory and hardware peripheral devices). DMA is usually preferred

44
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Figure 4.1: Upcalls and Downcalls in I/O System Structure

to programmed I/O because it allows for parallelism (in-cache CPU execution during

simultaneous device I/O) and often offers superior bus transfer rates.

4.1.2 Upcalls and Downcalls

Call direction refers to the relative orientation with respect to software layering

between a calling and called procedure. Calls originating near the “top” of the system soft-

ware and proceeding downward are called downcalls, and those originating from hardware

(usually interrupts, traps, and exceptions) are known as upcalls. Figure 4.1 illustrates the

concepts of upcalls and downcalls. The illustration depicts upcalls completing ultimately

at the user process, although many upcall schemes terminate upcalls within the kernel, and

do not reach the user process layer. Systems such as Swift [Cla85] and X-Kernel [HP91]

perform upcalls all the way to user space.
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4.1.3 Processes and Threads

The term process has been used informally above. To be more precise, a pro-

cess generally includes a single execution abstraction existing in its own unique address

space. To support multiprocessing, an operating system performs context switches be-

tween processes (and hence address spaces) to simulate the concurrent execution of more

than one activity. When a multiprocessor is available, multiple processes may actually

run simultaneously, requiring locks for shared data structures and re-entrant shared code

libraries.

When a process executes a downcall requesting I/O, the requested I/O data must

generally be fetched from some I/O device. At this time the process is usually blocked (made

to wait) until the requested data is obtained. When a process is blocked, it is not capable

of doing further useful work until its I/O data is obtained, and the system responds by

descheduling the blocked process and allowing another process to execute (by performing

a context switch). The blocked process is resumed (allowed to continue execution) when

its I/O data is available.

Creating processes in unique address spaces for concurrent tasks can be time

consuming. Furthermore, highly cooperative concurrent tasks implemented as separate

processes must employ IPC to communicate, often at significant performance cost. The

operating systems community has responded to these issues by introducing a number of

additional models of local (same machine) execution: coroutines, threads (user and kernel-

supported), lightweight processes, continuations, LRPC, etc. Such abstractions exist within

the following degrees of freedom:

degree of parallelism

amount of overhead

protection (isolation)

Of the execution abstractions listed above, threads have become most popular. Threads

generally allow the concurrent existence of more than one execution abstraction within the
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same address space. Sharing of data structures between threads is zero-cost, except for

synchronization. In addition, when threads are kernel-supported, blocking of one thread

need not block additional threads in the same address space. Such an arrangement provides

the ability for a requesting program to continue execution when awaiting I/O. Asynchronous

I/O generally refers to the ability to simultaneously handle other tasks while awaiting I/O.

Threads provide a mechanism to implement asynchronous I/O.

Downcall execution of processes or threads generally operates in the top half of

the system software. While executing in the top half, a process context is available, and

blocking may occur by stopping the execution of the process and switching to another as

mentioned above. Furthermore, resources such as a process’ stack may be conveniently

located, by identifying the presently-executing process. Execution in the bottom half refers

to operations invoked on behalf of an asynchronous event, typically a hardware interrupt.

Bottom-half execution is invoked at arbitrary points in time, and is generally unrelated

to the presently executing process(es). Furthermore, bottom-half upcalls are not allowed

to block. Synchronization between bottom and top halves is often achieved by disabling

interrupts during critical code sections in the top half.

4.1.4 Flow Control

The execution abstraction is closely linked with the method employed to achieve

flow control. Flow control refers to the task of speed-matching a fast data source with a

slower data sink. Blocking is often used to achieve flow control for both intra-machine

and inter-machine communication. A source is blocked until an associated sink is able to

consume some amount of outstanding data. Reliable protocols like TCP [Pos81] include

provisions for delivering flow–control information, used to control data sources, across a

network. For most systems, a source/sink combination with a faster sink requires no flow

control. Temporally sensitive systems, however, (e.g., multimedia delivery) may need to

attenuate source data production rate even when a faster sink is available. Generally, when

a source produces data at a rate in excess of the sink’s consumption rate, and the source

rate cannot be adjusted, flow control is not possible. Loss of flow control results in data
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loss, which is intolerable in traditional systems, but may be acceptable in some current

application domains (e.g., loss-tolerant multimedia applications).

4.2 Processing and Flow Control in PPIO

This section describes how flow control is implemented in PPIO. The first sub-

section provides a set of attributes used to categorize devices. These attributes are used

to dictate the ways in which differing types of I/O objects may be slowed to achieve flow

control.

4.2.1 I/O Object Attributes

In this section, an “I/O object” refers to any hardware or software entity capable

of performing I/O. I/O objects may be classified by defining a set of boolean I/O attributes

which describe the way I/O may be performed on most objects:

active or passive output

quenchable

synchronous writes

synchronous reads

An object with active output is any object capable of sourcing I/O data asynchronously

(i.e., without an associated request). Thus, the term output is used from an object’s point

of view. Typical active objects include network interfaces or transport layer network

connections (or datagrams for non-connection-oriented transport layers), in addition to

periodic devices like video or audio digitizers. These objects produce data without a read

operation from the operating system. An object with passive output performs I/O only after

a corresponding request for data. Active and passive devices are assumed to be capable

of asynchronous I/O unless specifically identified as only supporting synchronous reads or

writes (below). The characterizations of passive and active I/O are derived from by Black

in [Bla83].
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Black describes how traditional operating systems support only active operations

for user-process I/O. Active I/O operations are the familiar read() and write() oper-

ations. In his description of the Eden system, he observes that data may flow between a

source and sink not only by employing the traditional active I/O operations, but also by

either creating a system with no active output operations or no active input operations (these

latter situations are duals). Furthermore, such a system requires roughly half as many data

movement operations to be performed as compared with traditional systems. Although his

description is accurate and would otherwise be a sufficient basis for describing objects in

PPIO, the PPIO system must deal with not only abstract software objects but also hardware

devices, which may not in general be assumed to fit into either category. Thus, the following

attributes augment the active and passive I/O descriptions given in [Bla83].

Quenchable objects are those I/O objects whose data production rate may be

adjusted when acting as a source by means other than the traditional method of blocking

reads (usually by adjusting some “quality” parameter resulting in a smaller throughput

source rate). Quenchability is discussed in more detail below in Section 4.2.3. An I/O
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object is said to be flow-controllable if it is either quenchable or passive. This relationship

is illustrated in Figure 4.2. For passive objects, flow control is achieved by reducing the

read request rate.

I/O objects requiring synchronous writes demand the CPU copy data to the object.

Any device supporting only programmed I/O is considered to require synchronous writes.

In addition, common objects such as memory or files are characterized by synchronous

writes.

Those I/O objects requiring synchronous reads cannot perform data movement

out of the object without CPU intervention. Programmed I/O devices require synchronous

reads. Note that any passive object is also flow-controllable, as data production rate can

be arbitrarily modulated by reducing request rate. Table 4.1 illustrates these attributes for

a number of common I/O objects.

Table 4.1: Attributes for some common I/O Objects
Object Active Quenchable Sync Sync

Output Writes Reads
file

UDP dgram
TCP data

UART
video dig
disk ctlr

net intf (PIO)
net intf (DMA)

memory

4.2.2 Generic Source and Sink Procedures

In PPIO, I/O data can flow between any combination of sources and sinks de-

scribed above. In general, asynchronous I/O is used when available. For those objects

requiring synchronous I/O operations, kernel-level threads are employed. In general, all

PPIO sources execute the source algorithm depicted in Figure 4.3 and all PPIO sinks exe-
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cute the sink algorithm given in Figure 4.4. Flow control is achieved by executing the flow

algorithms discussed in Section 4.2.3.

In the generic routines provided in Figures 4.3 and 4.4, source objects not requiring

synchronous reads utilize upcalls to facilitate data flow by invoking the read handler.

When an upcall is executed, the corresponding sink object is looked up and a downcall

is performed to the sink routine. On the sink side, the situation is reversed. When

synchronous writes are required, the sink routine loops performing individual write

operations until data transfer is complete. If asynchronous writes are possible on the sink

object, the write handler routine is invoked on write completion, and the process

repeats itself.

4.2.3 Flow Control and Quenchability

In PPIO, objects identified as flow-controllable may be forced to reduce their

source rate. Generally, when non-flow-controllable objects are data sources, flow control

cannot be guaranteed, resulting in the possibility of data loss. As stated previously, data

loss may be tolerable for certain classes of applications.

Intuitively, flow-controllable objects include all passive objects in addition to

all objects directly supporting flow control (e.g., serial lines with hardware flow control,

transport-layer protocol connections providing software-based flow control). In addition,

flow-controllable objects include all quenchable objects. For example, a video digitizer

might operate at a constant rate of 30 frames per second, yet be able to adjust its resolution,

and thus the number of bytes per frame sourced. A digitizer of this variety would be

considered quenchable, and thus flow-controllable.

Generally, flow-control may be accomplished by stopping a process or thread

performing read requests on source objects, or by adjusting the throughput demands of a

source object (i.e., for quenchable objects). The flow control algorithm given in Figure 4.5

completes the source and sink algorithms given above. A return code of DONE from

the flow algorithm indicates a source should cease data production. The CONTINUE return

code data production should be continued (i.e., the source does not require flow control).
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For sources supporting asynchronous reads, upcalls may be used to facilitate data

flow. Upcalls from read handler are converted into downcalls to sink which request

or perform I/O on the sink. For asynchronous sinks, an upcall from write handler is

converted into a down call to source. The overall structure creates a “ping-pong” effect

in which control is exchanged cyclically between source and sink.

For data flow between objects requiring synchronous reads or writes, a thread

of control is required to execute the source or sink routines. This thread may block

as needed. Several systems provide kernel-level threads capable of such operation (see

[ABB 86] for such an example). Systems lacking direct kernel-level threads typically

support a callout list [KMQ89], where procedures can be queued for later execution [FP93].

4.3 Processing Modules

So far, this chapter has described a PPIO system with data sources and sinks. If

sources are directly associated with a corresponding sink, a simple data routing function is

performed. Such functionality may be useful for application layer gateways in networks and

routing of uninterpreted multimedia data to display devices. When data flowing between

an I/O source and sink object must be interpreted or transformed, intermediate processing

modules (PMs) may be required. This section describes how PMs relate to PPIO.

4.3.1 Definitions

Many systems have incorporated some notion of a set of routines or processes

(called PMs above) “connected together” in a linear pipeline. The pipeline transforms

data originating at a source on its way to a sink according to the the transformations

implemented in the PMs. Borrowing terminology from Pilot [Xer88], Figure 4.6 illustrates

the fundamental concepts. Data originates at a source, where a transducer provides an

interface to an I/O object on one side and a module interface on the other. Filters provide

a module interface on both sides. They receive incoming data from an upstream (or

previous) module, process it, and provide (possibly transformed) data to the next module
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in the pipeline.

Modules typically provide two distinct types of processing: immediate and de-

layed. Immediate processing occurs when received data takes the fastest path possible

through the pipeline, often without buffering. Delayed processing typically implies pro-

cessing occurs at a later time invoked by a clock-driven scheduler.

Several systems have been implemented with this basic design. In Streams [Rit84],

immediate processing is invoked by put procedures and delayed processing is invoked by

service procedures which run as coroutines. In [Lin94], immediate processing is called

in-band processing and is invoked by send and receive procedures. Delayed processing or

out-of-band processing is implemented in user space with the callbacks in the tcl [Ous90a]

language.

4.3.2 Module Types: flexibility, security, and performance

The PPIO design is predicated on a desire to improve performance for operating

systems providing protection. Much of its benefits derive from its ability to handle data

transfers in a manner decoupled from user process execution. In PPIO, modules are

implemented within the protected operating system and are therefore isolated from errant

or malicious user processes. To provide PPIO with flexibility comparable to user-process

based approaches, kernel-executed processing modules should be selected or provided by

user processes. Privileged execution of user-provided processing modules introduces the

issues of security and fault tolerance. Specifically, the operating system should not be

made insecure or faulty by executing errant or malicious processing modules. There exists

an important tradeoff between module flexibility and security in such an environment.

Generally, flexibility and security are inversely proportional.

Processing modules may be grouped into two broad categories: compiled and

interpreted. Furthermore, they may be subdivided into user, administrator, and system

modules. User modules may be written or submitted by any (non-privileged) user program

and are incorporated into an optimized pipeline by some system software layer. Adminis-

trator modules must be submitted to the OS for inclusion into a pipeline by some privileged
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process. System modules are generally implemented by the OS developer and included at

OS build time.

Streams [Rit84] offers a simple compiled/system module execution model. All

modules are predefined and are compiled in to the operating system at system generation

time. User processes select which modules comprise pipelines by dynamically stacking

one module atop another. In Streams, the pipeline exists between a hardware device (or

simulated hardware loopback agent called a pseudoterminal) and a user process.

In the modern commercial systems OSF/1 [Ope90] and Solaris [Sun90], a com-

piled/administrator module model is used. A compiled set of routines and data may be

loaded in or unloaded from an executing operating system when needed. A privileged

user process specifies which code files should be incorporated into the executing operating

system, and invokes system calls capable of installing the specified code. Code loaded into

the OS remains there until it is unloaded.

Several current UNIX-based systems now provide a facility known generally

as a packet filter, initially described by Mogul in [MRA87]. Packet filters fall into the

interpreted/administrator or interpreted/user model, depending on the level of privacy of

network data desired. Systems of this kind require a user to express data manipulations in

a special language which is interpreted and executed within the operating system.

A technique which has presently been applied only to user space entities but

offers promise for operating systems as well is called sandboxing [WLAG93]. A related

methodology is being undertaken on a larger scale in a new operating system effort called

SPIN [BCE 94]. These systems offer a compiled/user execution model, and rely on

code analysis implemented within a compiler to enforce restrictions on an arbitrary code

segments’ data access. The idea is to take user-provided code and execute it in another

(possibly trusted) protection domain.

Systems supporting user modules must insulate module execution from the non-

module portions of the system to guarantee system integrity. If a popular programming

language is used, user convenience is maximized, whether the language is interpreted or

compiled. Interpreted code provides enhanced security, as the system can determine harmful
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effects of code execution before certain operations are actually executed, but generally

executes slower due to the interpretation overhead. In compiled systems, techniques such

as sandboxing may be employed, but add execution overhead. Research in this area is

ongoing.

Administrator modules generally offer better performance than user modules, but

limit flexibility and depend on privileged process execution for security. On such systems,

the operating system takes no measures to ensure the safety of introduced code. Errors,

deadlocks, etc. may occur,1 resulting in potential OS crashes or data corruption. These

systems offer less flexibility than user modules by not allowing regular users to introduce

their own data transformations in pipelines they create.

System modules offer the highest degree of security and performance at the

price of minimum flexibility. Security and performance are maximized because modules

can take full advantage of the data structures available in the protected operating system

address space and module code may be written by the same programmers as the rest of

the operating system. Flexibility is minimal, as users and administrators may only select

among those modules provided by the operating system. Although additional modules

can be developed, the majority of programmers prefer to avoid operating system code

development and generation.

The PPIO model provides no restriction as to which module types can or cannot

be used. Administrator, system, and interpreted user modules are directly supportable with

present technology, and an example interface for such pipelines is provided in Chapter 3.

Compiled user modules are not presently supportable with commonly existing compiler

technology, but PPIO is well-positioned to take advantage of advances in this area which

seem imminent. Moreover, PPIO supports any or all of the modules types discussed, and

may be incorporated into most operating systems supporting a pipeline mechanism.
1The assumption here is that such errors are likely to occur more frequently in such a system as compared

with system modules because administrator modules would generally not be included as part of the standard
OS code base, and would thus have received comparatively less testing.
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4.3.3 Execution Locus

In PPIO, unlike most conventional I/O systems, the PMs described above need

not necessarily be executed on a main CPU. The execution locus (EL) of a PM refers to

the hardware agent responsible for executing PM instructions. In a conventional unipro-

cessor system, the EL of a PM resides in the (single) CPU. In a conventional (shared or

distributed memory; symmetric or asymmetric OS) multiprocessor, several PMs may ex-

ecute concurrently, and the EL of each is likely to be on separate main processors. With

PPIO, generalized functional multiprocessing (FM) may be exploited. Figure 4.7 illustrates

the differences between FM and conventional uniprocessing. With FM, processors are

generally dedicated to a small set of tasks and do not run general user or OS code. FM is

described in more detail in [NFE92], and is a primary design principal for the hardware of

the Auspex NFS file server product.

The flexibility of changing the EL for PMs in PPIO is achieved due to the

decoupling of user process execution from the movement of data. A requesting user

process need only request what processing needs to be performed, and the operating system

handles the transfer. In such a system as Streams, stream modules could execute with a

EL other than the main CPU, but data is ultimately routed to a consuming (producing) user

process, which must execute on a main CPU for data to flow. This restriction is lifted for

PPIO.



57

Figure 4.3: Source Algorithm: algorithm executed on source objects

source algorithm, executed by data sources
procedure source()
{

allocate system-dependent resources ;

/* if src_flow_downcall returns DONE, a thread
* will have been created, taking care of the read
*/
if (src_flow_downcall() == DONE) {

return ;
}

/*
* set up handler for async reads,
* initiate read for passive objects
* (active ones don’t need initiation
*/
if (!sync_reads || active_output) {

if (first_time) {
install read_complete handler ;
first_time = FALSE ;

}
if (active_output) {

return ;
} else {

initiate read ;
}

}
/*
* perform synchronous reads for objects that require
* it, call sink when complete
*/
if (sync_reads) {

loop {
perform read ;

}
call sink ;

}
return ;

}
procedure read_complete handler()
{

/*
* can still have a need for sync reads, if so
* do that here
*/
if (sync_reads) {

loop {
perform read ;

}
}
/*
* this call will drop the data if we’re active
*/
if (src_flow_upcall() == DONE) {

return ;
}

call sink ; /* give to peer */
}
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Figure 4.4: Sink Algorithm: algorithm executed on sink objects

sink algorithm, executed by data sinks

procedure sink()
{

/* install handlers for async writes */

if (firsttime && !syncwrites) {
install write_complete_handler ;
firsttime = FALSE ;

}

initiate write ;

if (syncwrites) {
loop until done {

perform write ;
}
free system dependent resources ;

/* if we’re running under a thread (top half)
* the thread will perform the next read for us,
* so be careful to not call the source here, or
* we’d keep eating up stack with procedure calls
*/
if (threadcreated == TRUE) {

return ;
} else {

call source ;
}

}
return;

}
procedure write_complete_handler()
{

free system dependent resources ;

/* same comment as above */
if (threadcreated == TRUE) {

return ;
} else {

call source ;
}
return ;

}
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Figure 4.5: Flow Algorithms: procedures executed on
source and sink objects to achieve flow control

procedure srcflowdowncall()
{

boolean flowcontrollable = (passive || quenchable) ;
/*
* if we’re fine or can’t do anything anyhow, just return
*/
if (!resourceslow || !flowcontrollable) {

return CONTINUE ;
}
/*
* the only way we can slow this source down is to
* block a thread. If we’re already a thread
* block until things are better. If we’re not,
* create a thread (which will call source again),
* and wind up blocking if necessary
*/
if (passive && !quenchable) {

if (threadcreated) {
block until !resourceslow ;
return CONTINUE ;

} else {
create thread reader ;
threadcreated = TRUE;
return DONE ;

}
}

/* at this point, must be quenchable */
quench source ; /* adjust quality or perform f-ctrl */
return CONTINUE ;

}
procedure srcflowupcall()
{

if (active && resourceslow) {
discard data ;
free resources ;
return DONE ;

}

return CONTINUE ;
}
thread reader()
{

/*
* only need to call the ’source’ side because
* all instances of ’source’ will call ’sink’ when
* appropriate
*/

loop until done {
call source ;

}
}
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Chapter 5

Data Flow

This chapter discusses the way data is stored and manipulated in I/O systems.

The first sections discuss the purpose and types of buffering used in conventional systems

for I/O, followed by the methods employed by PPIO to manage data transfers. The final

section discusses the kernel data structures required for implementing the PPIO system.

Data handling in PPIO is based on a streaming model which reduces overhead by “short-

circuiting” the data path between source and sink objects.

5.1 Buffering and Data Manipulation

This section begins with a review of the fundamental purposes and performance

implications of buffering. Buffering is generally used for caching (to improve performance),

or for temporary storage of data (e.g., during I/O transactions). Excess manipulation of

buffers reduces performance by increasing demand on the main memory system.

5.1.1 Purposes of Buffering

Operating systems often manage I/O data in transit from some data source to

some data sink. Data is generally stored in buffers (memory blocks), which may reside

in a generally accessible location (main memory) or may reside on peripherals equipped

with memory (outboard memory). Buffering generally improves throughput by reducing

61
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per–byte overhead at the expense of increased delay.

Buffers achieve four purposes in operating systems:

1. Temporary storage and manipulation of in–transit data

2. Speed–matching and burstiness smoothing (flow/rate control)

3. Caching

4. Performance enhancement (delay/throughput alteration)

Temporary storage of data is needed within an operating system when data must be

stored before it is consumed. Such situations occur often with hardware device management.

Many hardware devices employing DMA must have buffers supplied before I/O can be

performed. This situation is especially representative for network interface devices, which

have active output (see Chapter 4). In many cases (e.g., network protocol processing), data

must be manipulated before it is useful to higher layer software.

Speed–matching and burstiness smoothing may be realized with a buffer by

decoupling the buffer filling process from the buffer draining process. The function is

similar in notion to an aqueous reservoir, which may be employed to capture rain water (a

bursty source) and drain it later periodically (a constant-rate water tap). Speed–matching

is achieved similarly, by adjusting the rates of the filling and draining processes separately.

Buffers are often used within operating systems to perform a caching function

by providing a layer higher in the memory hierarchy than disk (or other devices). Cached

file data becomes accessible on the order of nanoseconds from DRAM memory as com-

pared with milliseconds when accessed with conventional disk drives or over conventional

networks.

Buffers may be employed to alter throughput and delay performance by perform-

ing data aggregation, which may be illustrated by employing the following equations:

5 1

5 2
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In these equations, represents throughput, represents delay, indicates the

length of a block of information, represents the fixed cost (per-block cost) of performing

an I/O operation, and represents the per-byte cost of performing an I/O operation. As

the amount of buffering introduced in such a system is increased ( ) or decreased

( 1), we arrive at the following limits for :

lim
1

5 3

lim
1

1 5 4

The corresponding limits for are as follows:

lim 5 5

lim
1

5 6

Equations 5.1 and 5.3 indicate that as buffering is increased ( ), achiev-

able throughput approaches the maximum channel capacity of 1 . The disadvantages of

large quantities of buffering include increased delay, as illustrated by Equations 5.2 and

5.5. Furthermore, physical memory requirements scale with .

Assuming 0, minimal buffering occurs when 1. In such environments,

the following relationship typically holds: . Throughput is minimized as

per-byte overhead is maximized. Delay is correspondingly minimized, as the minimum

possible delay of is achieved.

5.1.2 Uniform and Specialty Buffering Systems

Operating systems typically allocate buffers from a shared pool of physical mem-

ory. Uniform buffering refers to a common buffering scheme employed throughout an

operating system. Specialty buffering refers to multiple distinct types of buffering used

within the same system to interact with different system objects, typically different hard-

ware devices.

Both types of buffering have been incorporated into real systems. For example,

uniform buffering is incorporated in the fbufs scheme described by [DP93] and the buffering
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scheme used previously in the X-Kernel [HP91], along with Interrupt Request Packets

(IRPs) of WindowsNT [Cus93] and Request Packets of OS/2 [DK92]. Specialty buffering

is used by systems such as UNIX in its original form [ATT78] and when enhanced to

support networking [LJF83].

Systems employing uniform buffering usually include a buffer manager used by

all system software to allocate and free buffers. Buffers are allocated as needed when

data must be stored, or may have to be preallocated in cases where data arrival cannot be

predicted (i.e., active output I/O objects). They are released when data has been delivered to

its destination. Systems with specialty buffering typically include several buffer managers

which keep separate pools of memory for servicing allocation requests.

Buffering may be employed at all layers of system software. It is also commonly

used by application software performing I/O operations. In protected operating systems,

application-layer buffering is often distinct from operating-system buffering for reasons of

protection and synchronization. When data must be moved between the operating system’s

address space and an application’s, it is usually copied.

5.1.3 Buffer Manipulations

Operating systems spend significant amounts of time manipulating memory

buffers. The largest cost is associated with those operations that require access to each

byte of I/O data (in contrast to those which require only one operation per buffer). The

most common operations requiring access to each data byte in a buffer are as follows:

1. moving data between devices and main memory

2. zero-filling main memory regions

3. copying data from one main memory buffer to another

In most conventional operating systems, data is moved between I/O devices and

main memory with DMA or Programmed I/O. In the former case, an on-board DMA engine

performs cycle stealing by competing with the CPU for access to the bus interconnecting

devices and main memory. A small on-board memory aggregates I/O data which is moved
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into main memory by the DMA engine. Programmed I/O requires the CPU to perform

the bus accesses directly. DMA operation can have the following negative performance

impacts: reduction of CPU cache fill or flush rate due to memory bus contention and cache

invalidation needed following a successful DMA input transaction.

Zero-filling refers to setting the contents of memory buffers to the NULL value.

Zero-filled buffers are generally needed in a buffer manager’s free memory pool for servicing

allocation requests across mutually distrusting requesters. In cases where requesters are

mutually trusting (i.e., data privacy is not required), zero-filling may be avoided.

Data Copies

Unnecessary copying of data buffers presents a substantial concern for high-

performance operating systems. Copying is performed for the following primary reasons:

Alignment

Gather/scatter manipulations ((de)serialization)

Data movement between protection domains (isolation)

Data must be aligned within an operating system for a number of reasons. Con-

sider block-oriented devices such as disk controllers which perform low-level I/O operations

only on individual data sectors. Buffered I/O must generally be aligned on a block or word

boundary. Copying a portion of data from one file (i.e., sequence of blocks) to another

which does not begin at a properly-aligned point requires a data copy for alignment as

illustrated in Figure 5.1. In this illustration, the destination requires block alignment.1 The

data to be transferred begins half way through block 1 of the source block list and ends

half way through block 4. A copy is required to align the beginning of I/O data on a block

boundary, and indicated by the dashed arrows.

Data is sometimes required by hardware to be in contiguous memory addresses.

Conversely, some hardware is more easily programmed or can offer superior performance

by using non-contiguous buffers. Scattering or deserializing data refers to splitting a block
1This situation occurs in the UNIX buffer cache system.
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Figure 5.1: Copying a file from a non-aligned source offset.
A data copy is required when the destination requires block
(or word) alignment not satisfied by the source.
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Figure 5.3: Data copies performed during I/O data routing.
I/O data is copied between user and kernel address space on
both incoming and outgoing operations.

of contiguous data into non-contiguous sections. The reverse operation is gathering or

serializing. These operations are illustrated in Figure 5.2.

Isolation and protection is easily achieved by copying data. By producing a

second copy of data, any corruption or manipulation of one copy is isolated from the other.

Such copies are typical of interprocess communication mechanisms, either between user

processes or between the operating system and a user process. For example, a user process

moving data between I/O devices is illustrated in Figure 5.3.

5.1.4 Effects of Data Manipulations

The buffer manipulations described in the previous section have an important

impact on system performance. Each of the manipulations can be optimized in various

ways.
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For access to I/O devices supporting DMA, devices compete for bus access and

are allowed to transfer some number of bytes per transaction. The bus may be shared with

the main memory unit, in which case contention between the CPU and I/O devices can occur.

Furthermore, I/O data written to the memory unit requires a cache invalidation to prevent

the CPU from reading stale data from cache.2 DMA engines are typically programmable,

and throughput is maximized by employing the highest number of bits per word available

in addition to maximizing the DMA burst transfer size. With respect to buffering, DMA-

based peripherals may require contiguous and/or block-aligned I/O buffers. For devices

with active output, DMA buffers must generally be pre-allocated.

I/O devices supporting programmed I/O require CPU action to complete I/O

requests. Requiring CPU action (obviously) prevents the CPU from performing other tasks

simultaneously while I/O is occurring. PIO devices are generally less expensive than their

DMA-based counterparts. In addition, the cache invalidation required by DMA-based

operation is avoided. Finally, for PIO devices, I/O buffers can generally be allocated at the

point I/O data is moved from peripheral memory to main memory.

Zero-filling can be a time-consuming procedure on systems, especially when

much IPC is performed between mutually distrusting processes. In such cases, old data

from other processes must not be allowed to be visible in new buffer allocations. When

zero-filling is performed, the processor cache is affected by filling it with many zero values,

reducing its effectiveness.

Copying of data is considered to be one of the most important sources of overhead

in most I/O systems. It is, for example, the greatest source of overhead for processing of

network protocols at high throughput like TCP in UNIX [CJRS89]. A system’s copy

performance is given by the following equation:

1 1 1
5 7

Rearranging terms, we have:

5 8

2Note that some modern architectures, including the DEC Alpha [Sit92], update cache entries when DMA
takes place, thus obviating the need for cache invalidation.
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Figure 5.4: Architectural effect of DMA and copy opera-
tions. DMA operations require cache invalidation while copy
and PIO operations fill cache entries.

In these equations, , , and refer to memory system uncached read, write, and copy

throughput performance, respectively. These values are generally given in MBytes/sec or

MBits/sec.

DMA transfers and data copying also affect the performance of processor caches.

Figure 5.4 illustrates data flow during DMA and copy operations. In the case of DMA

operations, data is transferred from device to main memory, bypassing the processor cache.

The processor may continue execution during this period, but cached entries for the region

of memory involved in the DMA operation must be invalidated to force a cache line fill upon

access by the CPU. In the second portion of the figure, a data copy is illustrated. Copies are

performed by the CPU a word at a time between distinct portions of the cache. Copying

data which exhibits little locality (i.e., is not accessed again in the future) is detrimental

to good cache performance. In particular, filling precious cache entries copied data which

lacks locality forces out other data which may exhibit superior locality.
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Figure 5.5: Possible layers for implementing streaming

5.2 Data Flow in PPIO

This section turns to the approach taken in PPIO to address several of the data

movement problems described in the previous section. The PPIO design is focused on the

concept and mechanisms needed to support a more direct data flow between I/O objects.

5.2.1 Data Streaming

Data streaming was introduced in Section 2.4. It may be thought of as coupling a

data source with a corresponding sink at a software layer generally below the application.

In the following discussion of streaming the Interface layer represents an extension of the

layers presented in [DAPP92]. Several distinct layers of software may be considered for

the implementation of OS-supported streaming:

Interface - topmost layer of the OS, just below application

OS Kernel (protocol) - layer between interface and device driver
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DMA-DMA (driver) - bottommost software layer

Hardware - between I/O device

The layers of possible implementation are illustrated in Figure 5.5. With streaming ap-

proaches, greater performance is generally achieved at the expense of reduced flexibility.

Interface streaming requires comparatively little modification to the operating

system. In such a system, operating system code substitutes for application code responsible

for copying data between kernel and user. The OS code executes just above the interface

layer. For protected operating systems, this avoids protection domain switches between

kernel and user environments, and also avoids accompanying context switches. It also

eliminates the data copy between user and kernel space. However, buffer re-use may

be difficult or impossible at this layer (especially in specialty buffering systems) because

potentially incompatible buffering schemes may still require a data copy (in this case

between different portions of kernel virtual space).

Protocol streaming is similar to interface streaming, but is realized at one software

layer closer to the hardware. The term “protocol” is used here loosely. It refers not only to

network protocols, but also to other software abstractions implemented above device drivers.

Protocol here would include abstractions such as files for disks, streams for connection-

oriented network protocols, and virtual address spaces created for processes. Streaming

at the protocol layer is the preferred location to implement streaming on systems lacking

hardware streaming support. There are several reasons for choosing this layer for streaming.

First, at this layer, I/O data in transit is typically stored in the original buffer it was created

in (i.e., it has not yet been copied), and buffers may be passed and shared between different

“protocol” modules (especially in unified buffering systems). Second, placing streaming

above the device driver keeps most higher-level functionality isolated from the details of

device handling (a good software engineering technique). Third, within the protocol layer

semantic meaning becomes associated with I/O data, and meta-information is interpreted

and removed from the data stream.

Providing streaming support at the device driver level is possible but unattractive.

At the point I/O data emerges from a device driver it is generally an uninterpreted collection
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of data bytes with in-line meta-information. Meta-information such as protocol headers are

generally not understood by protocols other than those to which they were designed, and

should not be passed between I/O objects. Doing so would require interpretation of meta-

information which is already implemented at the protocol layer and would thus constitute a

redundant implementation (and possibly a layer violation, although this is a comparatively

minor concern).

5.2.2 Hardware Streaming

Providing streaming at the hardware layer is possible and is supported by a

small number of systems as discussed in Section 2.4. Supporting such systems requires

appropriate hardware combined with supporting system software. Appropriate hardware

support generally implies inter-device data transfer capability, plus sufficient processing

capability to stage data in a format acceptable to the receiving peer device.

Advocating processing on external devices has encountered resistance. The pri-

mary counterargument is to assert that equipping external devices with processors requires

those processors to progress in performance at a rate equal to or greater than the main CPU.

The cost of replacing more than one processor should be used to implement a symmetric

multiprocessor. There is a response to this argument.

External processors need not necessarily progress in performance at the rate

of regular microprocessors. Onboard processors have the task of staging data at a rate

commensurate with external I/O being performed, and when an I/O adapter is engineered

for a particular external interface, a processor of the appropriate speed is selected. The speed

of the processor need not be enhanced unless the speed of external I/O is increased. External

I/O interfaces are generally specified by a standards process and do not generally improve

in speed spontaneously (or even quickly as compared with improvements in microprocessor

technology).
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5.3 PPIO Data Structures

The PPIO architecture relies on the establishment of associations between data

sources and sinks. When an association is established, any relevant descriptors are recorded

in an association descriptor (AD).

5.3.1 Association Descriptors

The association descriptor (AD) is a dynamically allocated aggregate data type,

created one-to-one for each active association. The AD contains at least the following

information; additional information may be required on a per-implementation basis:

descriptor to source I/O object

descriptor to sink I/O object

descriptor of process initiating association

association state

current offset in source (if appropriate)

current offset in sink (if appropriate)

The source and sink descriptors are references to aggregate data structures describing a data

source or sink, including functions to initiate I/O, change state, or perform object-specific

operations (e.g., device resets or programming, etc). For example, although they may not

refer to conventional files, they are known as file descriptors in UNIX and POSIX.

The process descriptor is used to identify the process responsible for initiating the

association. It is used for accounting (keeping track of amount of I/O performed, etc) and

for delivery of asynchronous events and completion state. Should an association terminate

normally, the process descriptor is used to identify the particular process which should be

signaled. Note that while I/O data flows through an association, a process need not be

resident. In addition, exceptional conditions such as aborts and errors cause delivery of

asynchronous events (signals) to user processes. User processes therefore retain full control

over the handling of exceptions.
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The association state encodes the present condition of an association. Associations

can include the following state information: active, wanted, error. Active associations

represent data flows in operation without error. The wanted state indicates a process is

awaiting completion of an association. Associations may operate asynchronously, and a

process may opt not to await the completion of an association. In such cases, the wanted

condition will remain clear. The error condition is recorded in the AD when an I/O error

occurs on the source or sink object or some other internal inconsistency is encountered, and

ultimately results in the termination of the association.

Current offsets are maintained for I/O objects requiring offsets. Randomly-

addressable objects such as disks generally require offsets. Subsequent read and write

operations use the offset field to advance sequentially through a source or sink I/O object.

The offset can be manipulated randomly with a seek directive such as UNIX’s lseek.

5.3.2 Demultiplexing Reference

The PPIO architecture makes use of upcalls to execute the algorithms described

in Section 4.2.2. When executed as a result of an interrupt condition, scheduling delays

and intermediate buffering can be minimized. Upcalls are implemented by installing a

demultiplexing reference (DR) prior to initiation of an I/O transaction. Completion of an

I/O transaction includes execution of a procedure referenced by the DR. In cases where

demultiplexing is explicitly encoded in a subsystem (such as higher layer protocol or

port numbers in network protocols), an existing OS data structure is typically available

(e.g., protocol control block) in which the DR may be added. Alternatively, in cases where

state is maintained on a per-I/O-request basis (such as for disk blocks), the DR may be

encoded in the meta-data portion of an I/O buffer.

5.3.3 Modules

The data structures required for module support include a buffering mechanism

and support for process and timer execution. The PPIO architecture adopts the Stream



76

Block Structure

Link to next
Block structure

wptr

lim

base

type

flags

rptr

next

Memory Buffer

Figure 5.6: The Block Structure from Plan 9

architecture suggested originally by Ritchie [Rit84] in the 8th Edition UNIX system and

enhanced for use in Plan 9 [Pre90]. Other versions have evolved commercially from

SystemV Release 3.

Buffering mechanisms have been discussed in Section 5.1.2. In Ritchie’s Streams,

data and control information is passed in message blocks containing a simple header. The

header includes read, write, and limit pointers which refer to a variable sized data buffer.

In Plan 9, the header also includes a base pointer, and the message structure is now called

a Block. It is illustrated in Figure 5.6. The read and write pointers indicate where data

is read from or written to, respectively. The base and limit pointers indicate absolute

boundaries for data and provide bounds for the read and write pointers.

All systems presently available incorporating Streams or similar architectures

utilize a common buffering structure known to all modules. Examples of such systems

include Plan 9, System V UNIX, Windows NT, and the X-Kernel. Minimum complexity is

achieved by supporting a single buffer abstraction as modules need only accommodate the

single mechanism. The module architecture could be used in a specialty buffering system
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with some additional effort. In such cases, modules may be coded to handle all possible

buffering abstractions utilized in the existing operating system, or translation modules may

be constructed to convert from the various specialty buffers into a canonical form. The

former strategy trades additional complexity for improved performance. The latter trades

performance (by possible need for data copies) for flexibility and opportunity for code

re-use.

In addition to the data structure required to pass data between modules, data

structures are required to support the execution model of processing modules. In the

original Streams design, module processing is done with coroutines, requiring minimal

state between execution of module service routines. The design was later changed to

allow modules to run as processes. Module processes are lightweight, as they all coexist

within the kernel address space. Systems which support kernel-level threads (e.g., Mach, X-

Kernel, OSF, WinNT) may use their respective thread facilities for scheduling and activating

modules. For systems lacking such support, a Streams scheduler is typically grafted to the

already existing operating system.



Chapter 6

Implementation and Performance

This chapter focuses on experience gained by implementing prototypes of the

PPIO design described in the previous chapters of this dissertation. The implementations

have spanned several months at which time the interface itself has been evolving. Therefore,

the prototypes implement a simplified version of the interfaces presented in the Chapter 3.

The performance results, however, are insensitive to the interface specifics.

Three performance studies are discussed in this chapter. The first study shows

the effect upon CPU utilization and throughput when using PPIO to accomplish a file

copy operation. The second study investigates how PPIO can be used for improving the

movement of continuous media data delivered over a network in a video playback scenario.

The final study examines the use of PPIO in an application-level gateway and is focused

on measuring end-to-end latency and stability under high load.

6.1 Experiment 1: File System

The first implementation and performance study of the PPIO ideas and the

splice system call was prepared in 1992 and is described in [FP93]. Splice was imple-

mented as a system call under Ultrix 4.2A, and has been tested on a DECStation 5000/200

and DECStation 5000/240. Ultrix is a derivative of Berkeley UNIX supplied with Digital

Equipment Workstations based on the MIPS R3000 and MIPS R4000 microprocessors.

78
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The PPIO code comprises about 3000 lines of C source code (including comments), and

increases the kernel’s object size by about 10%.

6.1.1 Background

The file system prototype implementation of PPIO supports file-to-file copies

between files residing on local disk storage devices using splice. The following dis-

cussion outlines only the portions of the implementation relevant to the 4.2BSD-based file

system. The splice implementation uses a buffer cache kernel interface, and makes use

of the following buffer cache routines: bmap(), bread(), getblk(), bawrite(),

brelse(), as well as the dynamic kernel memory allocator and callout list. This

section assumes basic familiarity with these functions. They are discussed in more detail

in [KMQ89].

6.1.2 Implementation and Operational Details

Assuming an entire file is to be copied, splice operates generally as follows.

First, the size of the source file is determined from information present in the gnode.1 A

special association descriptor (AD) (see Section 5.3.1) is dynamically allocated to keep

state information about the data transfer. Placing all necessary information in this descriptor

allows I/O to proceed without requiring the availability of the calling process’ context.

A file copy proceeds by first acquiring the entire list of all physical block numbers

comprising the source file. The physical blocks are determined by repeatedly calling the

bmap() function with increasing offsets. The destination file is mapped similarly to the

source file, except a special version of bmap() is used for improved performance which

avoids delayed-writes of freshly allocated, zero-filled blocks. The list of physical blocks is

stored in a dynamically allocated table in the AD. At this point, all information necessary

to proceed with an asynchronous data transfer has been stored in the AD, and user-mode

execution of the calling process may be resumed.
1An Ultrix data structure describing a generic file system node.
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6.1.3 Read-Side Operation

Data transfer between the source and destination files must be allowed to proceed

without blocking; no guarantee can be made as to the availability of the calling process’

context. New versions of the kernel routines bread() and getblk(), with the calls to

biowait() removed (see below), provide most of the needed functionality. The physical

block number is retrieved by indexing into the table in the AD by the logical block number

on the source file. A call to the new bread() will schedule a read request and return

immediately, instead of blocking awaiting buffer completion in biowait(). A handler

function is installed in the buffer preceding the call to the driver’s strategy routine by setting

the B CALL bit and b iodone fields in the buffer header. When a read completes the

read handler is invoked, which in turn schedules a write by placing a reference to the write

handler at the head of the system callout list.

6.1.4 Write-Side Operation

The write side is invoked via the callout list with a locked buffer containing

valid data just acquired from the source file. The callout list is used to decouple the

I/O access periods at the source and destination I/O devices. Lock-step behavior is avoided

by introducing the asynchrony provided by the callout list; this improves performance by

allowing I/O operations at the source and destination points to proceed simultaneously.

New fields in the buffer header structure indicate the AD and logical block number which

are associated with a buffer’s data. Thus, several buffers may be in transit simultaneously

and need not be maintained in sequential order.

The logical block number, retrieved from the read-side buffer header, is used

to index into the AD to determine the destination physical block number for the current

buffer’s data. The physical block number is used to request a buffer header using a modified

version of getblk() which avoids allocating any real memory to the buffer,2 but instead

only sets the b bcount field in the new buffer header to the requested size. The data
2Ordinarily, getblk() allocates both block headers and associated physical and virtual memory pages.
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pointer in the new buffer header is saved and altered to point to the same address the data

pointer in the read-side buffer does, so both buffers share a common data area. Thus,

copying between cache buffers is avoided.

The size and flags fields in the buffer header are also saved and updated

to match the corresponding fields in the read-side buffer header. At this point a write

handler is installed in the header (by assigning the b iodone in the buffer header), and

an asynchronous write is performed by calling bawrite(). The write handler begins

execution after the asynchronous write has completed. It retrieves a pointer to the source-

side buffer for the current logical block number from the buffer just written and frees it by

calling brelse(). It then frees the buffer just written similarly. Finally, a read request

restarts the entire cycle.

6.1.5 Flow Control

Flow control cannot be achieved by causing the calling program to block. The

calling process is not directly responsible for initiating intermediate read or write

requests (these are done by the operating system), so causing it to block would provide little

benefit. Instead, rate-based flow control based on the completion rate of write requests is

employed.

Each AD maintains a count of the number of pending read and write requests. If

the number of pending reads and the number of pending writes drop below pre-specified

watermarks (currently 3 and 5, respectively), the write handler will issue up to a pre-

specified number of additional reads (currently 5). These values must be set such that the

source is not underutilized and the destination is not overwhelmed.

6.1.6 Performance Experiments

Several experiments were performed to measure the effectiveness of splice for

performing file copies. The goal of these experiments is to demonstrate improvement in

CPU availability and I/O system throughput. These improvements are achieved by reducing
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copying and switching overheads when using splice rather than using user-level read/write

system calls to transfer data between files.

Configuration

All file system experiments were performed on a DECStation 5000/200 equipped

with 32 MB memory using a 3.2 MB buffer cache. The DECStation 5000/200 MIPS

R3000 processor is clocked at 25 Mhz and includes a 64 KByte instruction and 64KByte

write-through data cache. Cached memory read throughput is 21 MB/s, uncached CPU

read rate is 10 MB/s, and partial-page write throughput is 20 MB/s [DEC90].

Digital’s RZ56 and RZ58 SCSI disks were used for performance measurements.

The RZ56 provides an average rotational latency of 8.3 ms, average seek time of 16 ms,

and a to/from media peak data transfer rate of 1.66 MB/s. The RZ58 provides an average

rotational latency of 5.6 ms, average seek time of of under 12.5 ms, and to/from media peak

data transfer rate of 3.1-3.9 MB/s. The RZ56 provides 64 KB of read-ahead cache, and the

RZ58 provides 256 KB of read-ahead cache segmented into 4 read-ahead requests [DEC92].

The performance improvement of splice is most pronounced when applied to

devices producing or consuming data at high rates relative to the CPU execution rate. To

determine how splice would perform when using fast devices, RAM disk was implemented.

The RAM disk is a device driver with a character-special and block-special device interface

upon which a UNIX file system may be created. Consequently, the effect of using fast

versus relatively slow devices on splice’s performance could be evaluated. Either device

required execution of the same file system code. The RAM disk driver uses 16MB of

statically allocated memory from the kernel’s BSS region, leaving a free memory pool of

5MB.

CPU Availability Test

The goals of measuring CPU availability and throughput is accomplished by

executing a CPU-bound test program in three different environments:

IDLE execution of the test program with no other programs running
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CP execution of the test program concurrent with a process execut-
ing the UNIX program cp copying a large regular file from a
file system located on one physical disk to a file system on a
different physical disk

SCP identical to CP, except a splice-based copy program scp is
used rather than cp

Baseline performance indices are obtained by executing the test program in the IDLE
environment and noting how long a fixed set of operations takes to complete. To measure

changes in CPU availability, the amount of time required for the test program to complete

the same number of operations is compared in the CP and SCP environments.

Table 6.1: Improvement in CPU availability using SCP vs. CP (copying 8MB file).

Disk Contending Contending Improvement of
Type with CP with SCP SCP over CP
RAM 49.3% 81.4% 65.1%
RZ58 63.6% 84.2% 32.4%
RZ56 63.8% 79.8% 25.1%

Table 6.1 and Figure 6.1 shows the relative performance degradation of a CPU-

bound process when executing concurrently with a process copying an 8MB file using

either cp or scp (i.e., the CP or SCP environments), with disks of various performance

characteristics. Other tests were performed with significantly larger file sizes, but were not

statistically distinguishable from the 8MB representative case listed above.

Referring to Table 6.1, column one lists the type of disks being used, including

the two SCSI disks described above and the RAM disk driver (recall that the RZ56 is

slowest disk, and the RAMDISK is the fastest). Columns two and three show the percentage

reduction in execution rate experienced by the test program in the CP and SCP environments,

respectively, as compared to the IDLE environment. Thus, a percentage reduction of %

means the process’s execution rate was a factor of 100 of the “IDLE rate,” which is the

execution rate in the IDLE environment. For example, in the CP environment using

RAMDISKs, the test program executed at 49.3% of the rate it would execute in the IDLE

environment, thus running approximately twice as long in the CP environment.
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Figure 6.1: CPU Availability comparison of CP and SCP
environments (8MB file copy).

Finally, column four indicates the percentage improvement in execution rate

when executing in a SCP environment compared to a CP environment; an improvement

in execution rate of 100% is a doubling in execution speed. This improvement factor is

a measure of how much more of the CPU becomes available to a process as a result of

the efficiencies due to splice-based I/O over read/write-based I/O. For example,

when using RAMDISKs, a program’s execution rate will improve by 65.1%, effectively

shortening the execution time by a factor of approximately 3
5 due to splice-based I/O (rather

than using read/write).

When contending with cp, the test program executes between 1
2 and 2

3 of its

speed without contention. However, when contending with scp, which uses the CPU and

memory more efficiently when doing I/O, the test program executes at 4
5 or more of its

speed without contention. Thus, processes will experience a 25 to 65 percent improvement

in execution speed when contending with splice-based I/O versus read/write-based

I/O, depending on the device speeds. With faster devices, splice’s effect on performance
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improvement becomes more dramatic.

Throughput Tests

To measure device-to-device file I/O throughput, a read cache cold start condition

was ensured by performing large file I/Os through the buffer cache before taking measure-

ments. Write-through behavior for the cache in the case of writes was ensured by using only

asynchronous writes for SCP and calling fsync() on the destination file for CP. Many of

CP’s delayed-write blocks are forced to disk in any case because the file sizes tested are

larger than the buffer cache size.

Table 6.2: Throughput Improvement with Splice based on environment.

Disk SCP Throughput CP Throughput %-Improvement
Type (MB/s) (MB/s) of SCP over CP
RAM 3.34 1.88 77.7%
RZ58 0.59 0.55 7.3%
RZ56 0.37 0.37 0.0%

Table 6.2 and Figure 6.2 shows the achievable throughput using scp vs. cp

when copying files. For the throughput tests, the test program used to produce Table 6.1

is disabled, so the figures in Table 6.2 represent maximum attainable throughput measures

assuming an otherwise idle CPU. Column one indicates the disk type, columns two and

three represent the throughputs measured for copying an 8MB file using scp and cp,

respectively. The fourth column indicates the percentage improvement in throughput of

scp compared to cp. Thus, splice-based copying can operate at just under 1.8 times

the maximum throughput of read/write-based copying using fast devices (in this case,

RAMDISKs). However, when using relatively slow devices such as today’s SCSI disks,

the disk transfer time dominates the overall throughput measurement and the benefit of

splice is minor.
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Discussion

The performance improvements achieved by splice result from two modifications

to the I/O subsystem:

shortening the path data must travel between devices by eliminating the need to move
data to and from user space

bypassing context switch overhead between the reading of the input device and writing
to the output device, leavingflow control and timing of block transfers (within a single
splice operation) to the kernel

Except for modifications for non-blocking behavior, no fundamental modifications have

been made to the buffering, scheduling, or block allocation strategies present in most UNIX

systems.
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6.2 Experiment 2: Network to Display

This section describes a network–to–framebuffer (NtoF) prototype implementa-

tion of PPIO and the splice system call. The NtoF splice is representative of the task

required at a multimedia receiving station and is described in [FP94]. Figure 6.3 illustrates

the NtoF splice implementation described below and used for performance evaluation. A

Berkeley–based network structure [LJFK86] was used to construct the prototype.

The splice call provides sufficient information for the operating system to

manage the flow of data between the I/O objects specified by the calling process. For

any active splice, a dynamically allocated kernel–resident association descriptor (AD)

maintains references to socket or file structures plus any additional information required

by the implementation.3 For Internet domain sockets, a new field in the inpcb structure

indicates the presence of an active splice for the associated socket by pointing to a valid

association descriptor.
3The descriptor provides enough information for splice to operate asynchronously as previously described,

although this feature has not been exercised.
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Implementing a prototype NtoF splice within the Berkeley network code frame-

work is straightforward. The Berkeley network framework essentially uses an upcall4

scheme until data is delivered to a socket buffer. When a socket buffer is ready, a user

process is awakened which continues its kernel–mode execution, copying data in the socket

buffer (in the form of mbuf data structures) to its own contiguous user address space.5 By

intercepting the upcall before an append operation is performed on the socket buffer, flow

of control may be diverted for splice processing.

At the time flow of control is diverted to splice processing, data received from the

network is in the form of mbufs. Mbufs represent the network buffer abstraction present in

most Berkeley–derived network implementations. Received packets are placed in mbufs or

a linked list of mbufs called an mbuf chain, and may be coalesced as required by protocol

processing. Using the IP protocol [ISI81], packet sizes are limited to 64KBytes which

is adequate to hold most compressed frames (for example, the largest JPEG–compressed

image we have encountered is about 20KBytes, with typical values of 7–8KBytes).

6.2.1 Performance Experiments

We constructed an experiment designed to simulate the video display environment

of Figure 6.4. The experiment illustrates the relationship between overhead introduced by

protocol processing and overhead associated with data copies and checksum operations

experienced at the receiving workstation.

Experimental Setup

Figure 6.5 illustrates the experimental setup. The throughput performance of a

continuous media receiving program using the splice mechanism to move data between

the network and display device was compared against an equivalent user–level process

implementation. The effect of protocol checksum computation on overall throughput was

also included in the study.
4Clark [Cla85] describes the notion of upcalls in detail, but does not discuss the Berkeley networking

implementation, which does not perform an upcall all the way to user space.
5Scatter/gather operation is supported with the readv() and writev() system calls.
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The experiment consists of a DECStation 5000/240 data sender and DECStation

5000/200 data receiver connected by an FDDI network. They have 25MHz and 40MHz

R3000A CPUs, respectively. Their SPECint ratings are 19.5 and 27.9. Each system runs

the Ultrix 4.2A operating system modified to support the splice mechanism. The faster

sender simulates a more powerful computational resource at the data source, as might

be typical of a video file server application. Theoretical FDDI bandwidth is 100 Mbit/s,

although measured performance at the network interface (a DEC DEFZA FDDI adapter,

which provides no send–side DMA) is 56-64 Mbit/s [KP93].

For the sender employing splice, 12,000 bytes of 8-bit image data are sent

per frame, divided into three FDDI packets using the UDP transport protocol [Pos80] to

send a sequence of 50 frames (150 FDDI packets). Image data is stored in a statically

allocated kernel memory region in the sender, and is passed directly to the network protocol

subsystem to be sent. For the user–level sender, the same image data is statically allocated

in a user process, and sent employing the UNIX socket layer [LJFK86]. A data copy is

performed between the user and kernel address spaces.

For the user–level receiver, incoming data is passed up through the UDP protocol

layer, delivered to the socket layer, and the receiving application is scheduled to run and

eventually copies data from the network buffers to its own user-level buffers. Withsplice,

data is not delivered to the socket layer, but is instead moved directly to the destination

(e.g., the frame buffer) in the context of a network software interrupt handler. The data

appears in the frame buffer as a 120x100 video window.

Data Loss at Receiver for User–Level Process

The UDP transport protocol provides no flow control or error recovery. Flow

control is generally necessary when a sender is faster than the associated receiver, to avoid

buffer overrun at the receiver. In this experiment, the splice–based mechanism at the

receiver allowed data transfer to occur between data source and sink with no data loss.

However, the user–process implementation experienced considerable data loss.

For the user–level experiment, if the sender is permitted to send as fast as possible
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(not flow controlled in any way), approximately 2
3 of the data is lost at the receiver. To avoid

buffer overrun at the receiver during the user–level test, a rate–basedflow control mechanism

for UDP was constructed by introducing artificial delay between network packets at the

sender. Figure 6.6 illustrates the percentage of packets lost as a function of the amount of

artificial delay introduced at the sender. Because the amount of delay required to avoid

overrun is a function of processing load at the receiver, the correct setting of time delay

depends on whether or not checksums are computed. The optimal delay value is the smallest

amount of time which still permits all data to be delivered successfully. We empirically

determined 600 microseconds to be the optimal value when checksums are computed; 400

microseconds is used when checksums are disabled.

In ordinary operation, UDP performs a checksum to detect corrupt data and dis-

cards datagrams whose checksums fail. The checksum operation is the dominant processing

overhead associated with UDP/IP [CHKM88]. For uncompressed video, corrupt data could

be delivered to the frame buffer without catastrophic result. In addition to removing check-

summing for loss–tolerant data such as uncompressed audio or video, checksums may be



92

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

MB
yte

s /
 Se

con
d

UDP ChecksumUDP Checksum
Enabled Disabled

User Mode Program

Splice-Based Program

27% Improvement

55% Improvement

Network-to-Framebuffer Throughput Results

Figure 6.7: Net-to-Display Throughput (Splice vs. User Process)

disabled in certain restricted operating environments (e.g., when hardware checksumming

is performed [KP93]). To evaluate the relationship between splice and checksumming, the

experiment was performed with checksums enabled and again with checksums disabled.

Measured Results

Figure 6.7 depicts the differences in measured throughput in MBytes per second

between the conventional user-mode program and the splice-based implementation. Note

that the user mode program uses memory mapped I/O for frame buffer access thus avoiding

a data copy when writing to the framebuffer. The graph shows differences between user

mode-based data transfer (not using splice) versus splice-based data transfer, both with the

UDP checksum computation enabled and disabled.

Discussion

The results show that throughput performance is improved by a factor of 1.25–1.5

when using splice, depending on whether the checksum computation is enabled or disabled.
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The checksum computation is the dominant factor in UDP processing; with it removed, data

copying becomes the dominant factor. Because splice directly addresses the problem of

data copying, it combines synergistically with elimination of the checksum. The combined

result offers a greater than doubling in throughput.

6.3 Experiment 3: Network to Network

The previous two experiments reported throughput gains achieved with an I/O

structure based on the guidelines of PPIO. These tests measured a substantial throughput

increase by performing macro experiments, and did not precisely account for where the

end-to-end performance gain comes from. In this experiment, micro measurements are

used to account for the specific tasks improved by the PPIO approach, and to what extent

performance is improved. In addition, the stability of such a configuration under overload

is investigated.

6.3.1 Purpose of Experiment

The purpose of the Network-to-Network (N2N) experiment is to use the previously

described splicemechanism to interconnect two network streams at the application layer

and compare the latency and stability of this configuration against that of a conventional

interconnection (i.e., using regular user processes). Latency refers to the time required to

receive an incoming datagram, process it (including protocol and checksum computations),

and forward it using another network connection. Stability refers to the system’s response

to increasing offered load as the network packet arrival rate is increased.

6.3.2 Setup

Figure 6.8 illustrates the experimental setup. Three workstations are assembled

as depicted in the figure. The source machine is a DEC 3000/400 (Alpha CPU, 133 Mhz),

and the sink machine is a DEC 3000/800 (Alpha CPU, 200Mhz). The test machine is a
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DECStation 5000/240 (MIPS CPU, 40Mhz). Two separate FDDI networks, one connecting

the source and test machines, the other connecting the test and sink machines, are used to

transport data using the UDP protocol [Pos80]. All machines are equipped with Digital

DEFTA FDDI interfaces. The source and sink Alpha machines are running DEC-OSF

versions 1.3 and 2.0, respectively. The test machine runs a version of Ultrix4.2A modified

as described below.

Using fast machines for generating and sinking data (as compared with the test

machine) provides the ability to measure the degradation experienced by the test machine

under overload condition without generating such an overload at either the source or sink.

6.3.3 Operation

The experiment operates by forwarding UDP datagrams between one network and

the other using either splice or conventional forwarding. In either case, the forwarding

operation is known as an application level gateway. Data is delivered up to and including

the transport layer before it is re-sent to the other network. To be more precise, define
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the notation to describe a UDP packet with source IP address and port

destined for IP address , port . A forwarding agent on the test machine creates

receiving UDP endpoints at and a sending endpoint at , where is the

IP address of ’s FDDI interface on network and is the IP address of ’s FDDI

interface on network . The source machine emits packets of the form .

These packets are rewritten to the form where is the sink machine’s IP

address and is its receiving port.

The application level gateway forwarding is of practical importance for conditions

in which specialized policy may be introduced on a per-port or per-service basis.6 This

type of forwarding may be achieved either by a system providing splice, in which case

forwarding is performed at the operating system layer (or below), or by a conventional

user-level program. In the user-level program, the required operations are as follows (in

the splice case, the loop is replaced with the splice call):

1. create two UDP endpoints (send and recv)

2. bind receive side to

3. Loop:

(a) read data from network
(b) write data to network

6.3.4 Implementation

The N2N UDP implementation is on a DECStation 5000/240 running a version

of Ultrix 4.2A modified to support the splice mechanism and the DEC DEFTA FDDI.7

The 4.2A networking subsystem is a derivative of the commonly available Berkeley BSD

networking implementation. In this environment, creating the N2N UDP splice was straight-

forward.

An association descriptor is maintained in the Berkeley networking implemen-

tation in the inpcb structure. Incoming packets are inspected, and the destination port
6For example, in the use of firewalls.
7The DEFTA interface was not available when Ultrix4.2A was released, but a suitable device driver

appears in later versions of Ultrix and DEC OSF/1.
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number is used to associate an incoming datagram with its intended receiving process.

Modifying the inpcb structure in a way similar to that previously described in the NtoF

experiment allows incoming packets to be directed up the protocol stack and immediately

down again without having to execute the calling user process. The kernel-resident splice

descriptor holds all information required by the system to forward a received datagram.

End-to-End Forwarding

The end-to-end forwarding task measured in this experiment consists of several

constituent operations. The salient performance differences between forwarding at the

user level and forwarding using splice arise due to differential work performed in two

fundamental categories:

Data Manipulation

Process Manipulation

In the case of UDP forwarding with spice, all process dispatching and scheduling over-

heads are eliminated. In addition, data manipulation (both copying and protocol processing)

is greatly reduced.

To better understand the difference in work required between the user and splice-

based forwarding schemes, the specific operations required by the user-level forwarder may

be compared with those required by the splice-based forwarder. The user-level forwarder

(and its supporting kernel) performs the following major operations:

1. handle hardware interrupt (receive FDDI packet)

2. queue received packet(s) and schedule IP protocol

3. run IP protocol via software interrupt (an upcall)

4. run UDP protocol and queue datagram for user process

5. switch to user process (performs copy in kernel mode)

6. run user process (completes read, performs write)

7. copy data to network queue structure (kernel mode)
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8. run UDP protocol

9. run IP protocol

10. run FDDI driver

11. run user process (to restart cycle)

The user-level forwarder performs the eleven operations listed above. The splice-based

forwarder can reduce this execution path and instead performs only the following eight

operations:

1. handle hardware interrupt (receive FDDI packet)

2. queue received packet(s) and schedule IP protocol

3. run IP protocol via software interrupt (an upcall)

4. run UDP protocol

5. pass through splice (will modify UDP headers)

6. run UDP protocol

7. run IP protocol

8. run FDDI driver

As can be seen from this comparison, the splice-based forwarder has about 3
4 of the number

of operations to perform as compared to the user-level forwarder. In addition, the PPIO

approach can make an efficient optimization not available to the user-level forwarder with

respect to protocol processing.

UDP Protocol Processing and PPIO

The UDP protocol is a “thin” protocol, providing little functionality beyond the

features of IP [ISI81]. For this reason, it is a useful protocol for evaluation of I/O and

network architecture performance because UDP does not include any dynamic control

which might perturb experimental results. Although UDP provides little functionality, it

does provide demultiplexing to the process level and a data checksum not present in IP.

The most costly operations (for large datagrams) in the processing of UDP is well-known
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to be the checksum computation and copying between user and kernel address spaces (for

examples, see [CJRS89] or [KP93]).

The user-level forwarding breakdown listed above includes the checksum and

copy operations in operations numbered 4,5,7 and 8. Operations 5 and 7 are data copies;

4 and 8 are checksum computations. Although splice obviously eliminates operations

5 and 7 because no user level process is directly involved in the data transfer, it can also

improve the checksum by eliminating its computation in the outgoing case.

Computation of the UDP checksum for the forwarding operation is performed

by the user-level forwarder at steps 4 and 8. It is performed twice, once on the incoming

side (step 4) for correctness, and once on the outgoing side (step 8) to establish a new

checksum for subsequent transmission. Although the data portion of datagrams remain

invariant across the forwarding operation, the UDP header is always changed and arbitrary

datagram data might be changed by the user process. The operating system’s protocol

implementation has no knowledge as to whether the user process has actually modified any

data and is therefore forced to compute a checksum covering both the new UDP header and

the entire data portion.

In contrast to the user-level forwarder, the splice implementation has full

knowledge over what end-to-end code path is executed during the forwarding operation,

and can ensure no UDP user data has been modified since the moment it was received.

Thus, the new (outgoing) UDP datagrams contain the same user data as when they were

received, but with different header information only. This fact can be used to create a

checksum for the outgoing datagram by computing only an incremental checksum.

Due to its dramatic impact on protocol performance, considerable effort has

been invested in the development of efficient methods for computing the UDP (Internet)

checksum [BP88]. Recently, incremental update methods for computing the checksum

have been refined [Rij94]. With incremental update, only the changes in a message need

be summed. The N2N UDP splice makes use of incremental checksum computation, and

computes the outgoing checksum as follows:
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Fortunately, the UDP header is of small and fixed size (8 bytes), and the compu-

tation runs in 1 time rather than time for bytes of data, as is characteristic of the

traditional checksum performed by the user-level forwarder.

6.3.5 Methodology

To obtain accurate performance measurements of latency and stability, the Ultrix

4.2A kernel clock handling routines (e.g., microtime()) were replaced, boosting the

clock resolution from 4ms to about 1 microsecond [Mil94]. In addition, the executed

code path was instrumented with trace points. At each tracepoint, timestamps are written

to a dynamically allocated kernel buffer. Timestamps are retrieved from the kernel by a

user process at the conclusion of each experiment. The timestamps are used to compute a

number of statistics described below.

Generally, all measurements are made both with UDP checksums enabled and

disabled to compare the difference. When splice is used with checksums enabled, the

incremental checksum technique described above is used.

Trace Points

For the user-level forwarder, the following ten trace points (points at which

timestamps are collected) are used to measure latency of individual operations:

ENQ hardware interrupt handler queues incoming datagram
IPI IP protocol is invoked by software interrupt

WSO UDP protocol queues datagram in socket buffer
BSO user-level forwarder completes copy from network to user buffer
SST user-level forwarder re-enters kernel by system call (writing)
UDP UDP protocol (output) started
OUT IP protocol completed
DRV send device driver code completed
SSB user-level forwarder completes kernel-mode execution
TSO user-level forwarder re-enters kernel and blocks for reading

The time differences between adjacent trace points account for the times to complete
required processing operations:
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IPI-ENQ dispatch software interrupt and invoke handler
WSO-IPI UDP and IP input processing, including checksum
BSO-WSO wake-up user process and perform network/user data copy
SST-BSO run user process and enter kernel
UDP-SST perform user/network data copy
OUT-UDP UDP and IP output processing, including checksum
DRV-OUT driver transmit overhead
SSB-DRV return to user process (kernel mode)
TSO-SSB run user process and re-enter kernel

For the splice-based forwarder, the following six tracepoints are used:

ENQ hardware interrupt handler queues incoming datagram
IPI IP protocol is invoked by software interrupt

WSP invoke splice code
UDP UDP protocol (output) started
OUT IP protocol completed
DRV send device driver code completed

The metrics derived from the differences between adjacent tracepoint are analo-

gous to those described for the user-level forwarder.

For measuring stability, a macro type experiment is used. The forwarding system

is subjected to an increasing packet-per-second load with a fixed packet size, and the number

of successfully forwarded packets is recorded.

Statistics

The timestamp difference metrics described above are used to measure the time

overhead associated with each step in the forwarding process. In addition, TSO-ENQ and

DRV-ENQ are used to evaluate the overall end-to-end forwarding time in the user-level

and splice cases, respectively.

For the latency tests, a sample size of 200 packets of each size along the interval

1 4000 bytes with increment 100 bytes are measured with a constant packet inter-arrival

time of approximately 20ms. This period ensures the forwarder will not become overloaded

by too high an arrival rate, and has been determined empirically. The stability experiments,

described below, examine the effect of increasing the arrival rate.
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The arithmetic mean of each time metric is computed in addition to the mean of

the end-to-end forwarding times, and each mean calculation is accompanied by a confidence

interval at the 95% level of confidence.

For the stability tests, two distinct packet sizes are chosen for experimentation:

1500 and 4000 bytes. The packet arrival rate is varied between 500 packets per second (pps)

and 4500pps with an increment of about 200pps. A sample size of 10000 packets are sent

for each packet rate. The 1500 byte packet size is a reasonable choice considering the wide

availability of ethernet networks with 1.5KByte MTU sizes and the increased deployment

of MTU Path Discovery [MD90], which will take advantage of this size over the default

size of 576 bytes. The 4000 byte size is used to measure stability at maximum throughput

(up to the FDDI rate of 100Mb/s).

For each packet rate, the number of successfully forwarded packets is recorded

and divided by the number of transmitted packets to produce an estimate of the probability

of successful packet delivery ˆ. Assuming the probability of successful forwarding fol-

lows a Bernoulli distribution with parameter , ˆ is a maximum likelihood estimator of

[All90](p. 435).

6.3.6 Results

Latency Experiment

Figure 6.9 illustrates the comparison of means of the overall end-to-end for-

warding time for the user-level forwarder and the splice-based forwarder with and without

UDP checksums. The small vertical bars represent confidence intervals at a 95% level

of confidence. For 1 byte packets (the left side of the graph), the checksum and data

copy overheads are dwarfed by other protocol processing and process manipulation. The

user-level forwarder takes about 780 microseconds, and the splice-based forwarder takes

about 300 microseconds, representing an improvement in latency of a factor of 2.6. In

other words, the splice-based forwarder requires only about 40% of the time the user-level

forwarder requires.
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Figure 6.9: Comparison of forwarding latency, user vs splice.

For larger (4000 byte) packets, checksum and data copies dominate the time

required for the user-level forwarder to operate. With UDP checksums enabled, the user-

level forwarder requires 1826 microseconds, while the splice-based forwarder requires only

876 microseconds. Thus, the latency reduction due to splice is about a factor of 2. With

UDP checksums disabled, the user-level forwarder is able to complete a packet forwarding

in 1071 microseconds, while splice is able to do so in 329 microseconds. This represents a

latency improvement of a factor of 3.3, or more than a tripling in latency improvement.

In Figure 6.9, the user-level forwarders experience a nonlinearity between 1000

and 1100 bytes. This discontinuity is a result of the kernel routine sosend(), which is

invoked to copy user data from a application’s buffer to a linked list of kernel-resident net-

work buffers (mbufs) on output. If sosend() is given a user buffer less than NCLBYTES

in size, it creates a chain of mbufs, each of which contain MSIZE bytes of data. If the user

buffer size exceeds NCLBYTES, it will instead opt for using mbufs of size M CLUSTERSZ.

In Ultrix4.2A, the values of NCLBYTES, MSIZE, and M CLUSTERSZ are 1024, 128, and
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Figure 6.10: Times for aggregate operations (USER)

4096 bytes respectively.8 Thus, once the 1024 byte threshold is crossed, a single mbuf is

used until the next increment of 4096 bytes is reached. Splice does not exhibit the same

discontinuity because sosend() is never invoked in the splice forwarding case.

Figures 6.10, 6.11, 6.12 and 6.13 indicate the time spent in each required process-

ing operation listed in Section 6.3.5 above. In Figure 6.10, the most costly operations for the

user forwarder are the protocol processing operations (including checksums) and incom-

ing data copy. For single-byte packets, these measurements represent the fixed per-packet

costs, because the checksum and copies need only manipulate a single byte. Thus, the lower

bound on the time consumed by the checksums together is 161 124 285 microseconds

of the 780 total time, or about 37%. The next most costly operation is the incoming data

copy (again, of a single byte). The lower bound for the copy is 124 microseconds or 16%.

The remaining 47% of the overall time is spent in process manipulations and running the

DEFTA device driver.
8These values may be modified by changing the file mbuf.h and recompiling the operating system from

sources.
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For larger (4000 byte) packets, Figure 6.10 indicates the impact of the protocol

processing and checksums to be 655 487 1142 microseconds, or 63% of the overall 1826

microseconds. The data copies account for an additional 245 118 363 microseconds,

or 20%. The remaining 17% is spent manipulating processes and running the device

driver. The total time in the driver comprises approximately 7% of the total time at 128

microseconds.

Turning to the performance graph of the splice-based forwarder in Figure 6.11,

the topmost line with ordinate value at 350 microseconds and going off-scale at abscissa

2700 bytes represents the sum of the aggregate times and is equivalent to the line labeled

SPLICE in Figure 6.9. (The corresponding line for the user-level forwarder was omitted

because it is above 700 microseconds for all packet sizes and would have been entirely

off-scale.) In Figure 6.11 only the line representing the incoming checksum computation

has a non-zero slope, starting with 104 microseconds for 1-byte packets and growing to

576 microseconds for 4000 bytes packets. All other operations are approximately constant,

with the outgoing (incremental) checksum requiring 132 microseconds, the combined input
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and output driver processing about 100 microseconds, and the splice overhead at about 15

microseconds.

Figures 6.10 and 6.11 reveal several key differences between the performance

of user-level forwarding as compared with the splice-based approach. The dominant cost

with increasing packet size is the checksum computation. The user-level forwarder must

compute the checksum twice, giving rise to 1142 microseconds of overhead, as compared

with the splice-based forwarder which, by using the incremental checksum, can accomplish

the same task in 710 microseconds for 4000 byte packets. The user-level forwarder loses

a total of 366 microseconds to copying data into and out of the user process at this size,

while the splice-based forwarder never requires any such copy. In addition, the splice-based

forwarder does not exhibit the nonlinearity at the 1Kbyte packet size. Finally, the user-level

forwarder spends about 180 microseconds in process manipulation while the splice-based

forwarder performs no process manipulation.

In Figure 6.12, the UDP checksums have been disabled for the user forwarder. The

time taken by protocol processing remains constant across packet size at 150 120 270
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Figure 6.13: Times for aggregate operations (SPLICE-NOCKSUM)

microseconds. Without checksums, the dominant processing operation is the incoming data

copy which grows linearly from 133 to 364 microseconds for 1 byte and 4000 byte packets,

respectively. The slope of this line is greater than the corresponding line in Figure 6.10,

indicating the incoming data copy is more costly when checksums are disabled. This result

can be explained by noting that the checksum computation in Figure 6.10 has caused a

filling of data cache with packet data, resulting in a lower time to perform the data copy.

The MIPS R3000 architecture does not automatically insert I/O data into its data cache when

a DMA operation is performed, and any such data must therefore be read from memory

rather than cache.

Figure 6.13 depicts the splice-based forwarder with checksums disabled. The top

line once again represents the aggregate sum, but now remains isoheightual for all packets

sizes. Remarkably, no constituent operation grows with packet size for splice-based for-

warding with checksums disabled, suggesting that the adapter/memory DMA transactions

executed by the interfaces is not adversely impacting forwarding performance. This is

not especially surprising, considering the DEC TurboChannel operates at 100Mbytes/s,
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Figure 6.14: Stability Comparison (1500 bytes)

considerably faster than the 100Mb/s FDDI maximum rate.

Stability Experiment

The results of the stability experiments are depicted in Figures 6.14 and 6.15

for 1500 byte and 4000 byte packets, respectively. The probability of successful delivery

will drop below 1.0 when the system is forced to drop packets due to a packet arrival rate

exceeding its own forwarding rate. In this test environment, discarding is performed at the

ENQ tracepoint described above when the interface’s hardware interrupt handler attempts

to add a new packet to the IP protocol queue (ipintrq). The maximum length of this

queue is defined by the constant IFQ MAXLEN and is typically set to 50 packets.9

For 1500 byte packets with checksums enabled, the user-level forwarder becomes

unstable (i.e. the forwarding probability drop below 1.0) at about 900 pps as compared

with 1600 pps for the splice based forwarder. With checksums disabled, the user-level
9This constant is contained in the kernel file if.h and may be altered by recompiling the operating system

from sources.
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Figure 6.15: Stability Comparison (4000 bytes)

forwarder becomes unstable at about 1300 pps as compared to about 2300 for the splice-

based forwarder. In either case, the splice-based forwarder can tolerate a factor of 1.8

greater offered load. For 4000 byte packets, Figure 6.15 indicates the 1.8 improvement

factor is maintained when checksums are enabled. When checksums are disabled, the

improvement of splice grows to a factor of about 2.4.

6.3.7 Latency and Stability Conclusions

The performance results of this experiment reveals the PPIO approach can be

used to significantly reduce end-to-end forwarding latency. For small messages, where the

cost of checksum and data copies is small, the PPIO approach requires only 40% of the

time required by the conventional user-level forwarder. For larger messages, the cost of

checksum and copies becomes dominant. When checksums are enabled, PPIO requires

50% of the time required by the user-level forwarder. With checksums disabled, PPIO

requires only 30% of the time.
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The result for small messages is significant in light of the many efforts to reduce

copying and data checksum computations. For small messages, these operations are of

negligible cost, revealing the 60% performance improvement due to PPIO is primarily a

result of reducing process manipulation overhead rather than data manipulation overhead.

Thus, other systems which attempt to address the data manipulation overheads by techniques

such as memory-mapped I/O will still suffer the overheads of process manipulation.

For large messages with checksums in PPIO, only the incoming checksum com-

putation scales linearly with message size; all other overheads are approximately constant

and the PPIO forwarder does not exhibit any latency nonlinearities. For large messages

with checksums, PPIO gains a significant advantage because of the incremental checksum.

This optimization is the direct result of having knowledge about the code path traversed

during the forwarding operation and observing that no user data is modified. Similar opti-

mizations are possible in many circumstances with PPIO and are a general characteristic of

the approach.

For large messages without checksums, the user-level forwarding time is dom-

inated by data copying. If all data copying were removed from the user-level forwarder,

the forwarding time would drop to approximately 1071 364 120 588 microsec-

onds. Even for a situation so favorable to the user-level forwarder, process manipulation

accounts for about 18% of this overhead and the PPIO approach performs 40% better (329

microseconds).

With respect to stability under overload, the splice-based forwarder is able to

sustain about twice the packet rate without dropping packets, except in the case for large

packets when checksums are disabled, where it is able to sustain about 2.4 times the rate of

the user-level forwarder. The point at which packet drops begin is when the packet arrival

rate exceeds the forwarding rate, and is thus directly proportional to the reciprocal of the

forwarding latency. In terms of maximum throughput (achieved at the 4000 byte packet

size with checksums disabled) the best case for the splice-based forwarder is 61.3 Mb/s

while the user-level best case is 21.8Mb/s. With checksums turned on, these numbers drop

to 30.5Mb/s and 16.8Mb/s, respectively.
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Generally, the PPIO approach for this environment leads to a drop in forwarding

latency by a factor of between two and three over a comparable user-level forwarder. The

result has the direct positive effect of delivering data across the forwarding agent in a more

timely manner (reducing end-to-end latency), but also improves maximum throughput by

a similar factor as a consequence. As explained, the implementation is straightforward and

is able to take advantage of explicit knowledge about the code path taken to forward data.



Chapter 7

Conclusions and Future Work

The I/O subsystems present in most modern-day and historical operating systems

were designed with a memory-oriented model of I/O. Data is moved between peripheral

devices to main memory where it is operated upon by user processes and is eventually

moved out of main memory to some other peripheral device. This approach suffers from a

number of performance problems, especially when no intermediate manipulation is required

as data is passed between peripherals.

The PPIO system described in this dissertation was originally conceived to address

the issues posed by the desire to manipulate continuous media (digital audio or video sample

data). Continuous media data lacks locality; it is not often accessed multiple times in a

short span of time. These characteristics limit the effectiveness of conventional memory

hierarchy designs which depend on locality for efficient operation.

7.1 Conclusions

PPIO improves the performance of applications by streaming data between source

and sink I/O objects at the “protocol” layer of software or hardware. The “protocol” layer

includes not only conventional network protocols, but also any subsystem which adds

semantic meaning to raw data (e.g., file systems would also be considered a protocol layer).

Streaming improves latency by reducing the number of entities traversed in the pipeline of

111
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a data flow. It also improves throughput by limiting costly data copy operations. Carefully

implemented, PPIO can offer improved cache performance by not filling cache memory

with data lacking locality. Restated, streamed data need not necessarily pass through main

memory and may therefore avoid being cached, depending on characteristics of the I/O

architecture.

The dissertation has argued the following points, that PPIO:

is a novel approach to I/O subsystem design

is intuitive to the programmer

can be implemented in conventional operating systems

performs better than existing systems for a large class of important applications

The PPIO design is an I/O system based on data streaming with processing

accomplished by the introduction of kernel-maintained processing modules. It builds on

previous work in the areas of operating systems and networking. Most previous work

aims to improve the performance of I/O data flows using the existing memory-oriented I/O

structure; PPIO shortens the I/O data path. Unlike PPIO, the few existing examples of

hardware or software streaming have been implemented for specific applications and have

not been suggested as a general structuring principal for I/O system software.

The PPIO system interface allows user applications to specify the endpoints and

intermediate processing modules of I/O data flows. The interface lacks buffer addresses

and sizes, allowing the operating system to optimize these values. With conventional I/O

systems, an application programmer wishing to perform a data transfer between I/O objects

must generally select a buffer size and address, but has little guidance in selecting optimal

values. In addition, the conventional interface requires user processes to execute in order for

I/O data to flow between objects. The rate at which I/O is performed is generally awkward

for the user process to predict (or control). With PPIO, both of these issues as solved by

relegating control to the operating system. The user interface supports the establishment

of associations which interconnect I/O objects, and is analogous to the old-style telephone

central office “patch panel”. This abstraction has a long history and is easily understood by

most programmers.
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The implementation of PPIO requires modest modification to existing operating

system software. In PPIO, a regime of object attributes are used to characterize most I/O

objects (and pseudodevices). Attributes are used to implement flow control between I/O

objects specified by user processes. Unlike conventional flow control approaches, PPIO

includes generic data source and sink procedures which are sensitive to the attributes of

associated objects. Objects may be “slowed down” either by reducing I/O request rates

or by adjusting quality parameters when possible. The source and sink procedures use

an interrupt-driven structure (for such objects capable of invoking upcalls) to keep data

in flight, and rely on a separate control thread only when necessary, thereby avoiding

unnecessary context switches and minimizing latency.

Implementation of PPIO may be divided into two parts: handling of processing

(execution thread), and handling of data (data movement with respect to main memory).

Processing is generally initiated by way of upcalls or by way of kernel-supported threads in

the case of nontrivial modules (or when queuing is required). Data manipulations in PPIO

are accomplished in the native buffering scheme of the host operating system, and thus

require no re-implementation of existing buffer managers. Generally, the implementation

environment of PPIO requires only asynchronous event notification and thread execution

which are common in most operating systems today.

An implementation of PPIO can improve performance for a broad range of ap-

plications. It has been shown to improve the CPU utilization, latency, and throughput

of several applications, including file copying, displaying multimedia data, and routing

network traffic at the transport layer. The architecture is highly adapted for the routing

of raw data between objects or devices, and is ideally suited to other common operations

such as backup and file system service (fileserver operation). With appropriate processing

modules, arbitrary data transformations are possible, although transformations of sufficient

complexity are likely to more easily maintained using the conventional I/O model. Filtering

and coding of continuous media data (digital filtering, spectral transformations, encryption)

appear to be ideally matched to PPIO with appropriate module implementations.
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With respect to latency and throughput performance, the PPIO approach generally

performs fewer operations than comparable conventional systems. It avoids all user/kernel

copying operations, and can often make computational optimizations (such as the incre-

mental checksum described in Section 6.3). Sharing of kernel buffers between associated

I/O objects is possible in PPIO when data alignment restrictions are met. PPIO does not

invoke user processes to route data, and can therefore eliminate all process manipulation

overheads.

Three software prototype implementations of PPIO indicate CPU availability

improves by 30% or more and throughput and latency improve by a factor of 2 to 3,

depending on the speed of I/O devices. Generally, the latency and throughput performance

improvements offered by PPIO improve with faster I/O devices, indicating PPIO scales

well with new I/O device technology.

7.2 Critique

The new paradigm suggested by PPIO relies on the concept of streaming intro-

duced in Section 2.4. Streaming is amenable to high-performance implementations due to

its elimination of software layer overheads and its capability to be driven by asynchronous

events. The most serious difficulty of streaming (and thus with PPIO as well) is the

introduction of processing in a data path based on streaming.

In PPIO, kernel modules are used to perform arbitrary functions on I/O data

and may be executed either in kernel or on attached processors. Ensuring the security of

modules requires either an interpreted or compiled approach, as discussed in Section 4.3.2.

Although the PPIO design discussed in this dissertation enumerates the techniques available

for module security, no “best” solution is currently offered. The selection of module security

mechanism(s) requires further investigation into the performance, flexibility, and security

offered by such mechanisms as sandboxing and other compiled techniques.

In addition to the security issues of module processing, the level of functionality

most appropriate for module implementation is not clear. Although a system supporting
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PPIO would likely be delivered with a variety of pre-written modules, the task of writing

one’s own module may be formidable.

Modules must be made to execute in the environment provided by either the

kernel or an attached device, and may require system functions such as timers, queues,

and schedulable threads. Such abstractions may prove difficult for non-experts to utilize

effectively. A programmer requiring substantial processing of I/O data is not provided with

clear guidance on whether to utilize processing modules and PPIO versus a traditional user

process implementation, although it seems clear a truly I/O intensive application requiring

little user interaction would stand to benefit substantially from the PPIO approach.

7.3 Future Work

The development of the PPIO design has raised a number of issues which deserve

future exploration. The module architecture was introduced after the initial development

of the PPIO approach. Although introduction of code into operating system address space

is available in many systems today (as described in Section 3.1.4), the secure introduction

of arbitrary user code into a privileged environment remains a research item, and work in

this area would complement PPIO.

Most of the experience with PPIO to date is with the interconnection of devices

lacking flow or rate control (with the notable exception of the file system experiment, which

does provide flow control). The issue of efficient management of flow and rate control

remains a fertile area of work, especially in non-realtime-scheduled operating systems.

Such research might include an investigation of what quality of service levels could be

provided by a PPIO association.

The PPIO experiments described in this dissertation were all based on software-

based streaming. Although the performance results were worthwhile (factors of 2 to

3), taking advantage of adapters capable of hardware-streaming could offer far greater

improvements. PPIO was conceived with such adapters in mind and is an appropriate

system architecture for exploiting them. Unfortunately, few general-purpose systems make
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use of the hardware streaming technique today (the IBM Microchannel bus supports it,

but it is not widely used). Incorporating such adapters into a PPIO system would provide

valuable insight to bounds on achievable performance.

Finally, the stability graphs (Figures 6.14 and 6.15) indicate an exponential decay

in probability of successful packet delivery using forwarders based on splice, user processes,

and conventional gateway forwarding using IP. Although the non-overloaded queuing dy-

namics of similar systems have been understood for some time, the dynamics of loss under

overload (and congestion in general) warrants further investigation. In particular, the effect

of loss on common transport layer protocols running over new network technologies (e.g.,

wireless and cell-based networks which exhibit loss characteristics different from today’s

Internet) should be investigated.
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