Comparing Information Centric and Delay Tolerant Networking

Kevin Fall

Qualcomm Research, Berkeley

Oct 23, 2012 / LCN Clearwater, FL

Networking Today

- Existing TCP/IP-based Internet
 - Every interface has 32 or 128-bit IP address
 - Identity and location tied together
 - Routing establishes single end-to-end path to host
 - Most traffic uses virtual connection (with TCP) using small best effort transfer unit (datagram)
 - Security of channels between hosts; firewalls
 - Early binding of host name to address
 - Binding security (DNSSEC) just starting

Historical Motivators for Change

- DNS host table files too big and hard to manage
- CIDR routing scalability concerns
- IPV6 running out of IPv4 addresses
- Firewalls NATS

- TLS, IPsec, DNSSEC security
- Delay/Disruption Tolerant Networking
 - Not always connected
 - Not always using same networking stack
- Information/Content Oriented Networking
 - Connections to hosts not of paramount importance
 - Content caching and security are; make them better

Goal

- In Delay Tolerant Networking (DTN), primary areas of focus have on
 - Supporting heterogeneous networks & naming
 - Handling disruption / disconnection
- Information Centric Networking (ICN) has been introduced as a new architectural area
 - What is it all about?
 - Does it relate to, borrow from, or replace DTN?

Major Tenets of DTN

- To support 'radical heterogeneity':
 - 'Entities' can be named
 - (hosts, groups, predicates, anything else)
 - Adaptation procedures ('convergence layer')
 - For data delivery and routing in regions
- To support delay/disruption tolerance:
 - Per-node storage holds data for (long) time
 - Store-carry-forward / n-copy forwarding
 - Late binding (of identifiers to locators)

Information-Centric Networking

Motivator:

- Data is much more important than conversations
- So change focus to the content / information
- A few ICN related projects:
 - NDN (CCN) Named Data Networking (USA/NSF)
 - PSIRP->PURSUIT Pub/Sub Internet (EU/FP7)
 - 4WARD/Netinf Networking Information (EU/FP7)
 - DONA Data-Oriented Network Architecture (UCB)
 - PODNET Mobile Distribution of UG content (сн/етнz)
 - CONVERGENCE Pub/Sub based on VDI (EU/FP7)
 - COMET Content Mediator/Content Aware Nets (EU/FP7)
 - CBMEN Content Based Mobile Edge (USA/DARPA)

ICN Tenets

- Primary unit of interest is (named data) object
- Names (IDs) are location independent
- Pub/sub [FIND/REGISTER] as basic net operations
 - Dates back to Stanford TRIAD Project (2000/2001)
- Routing function supports a pub/sub model
 - Routing on IDs (name based) natively -or-
 - Mapping between locators and IDs
 - Caching is a by-product of in-network storage
- Security primarily on content, not channel

Nuances of Naming

- What needs to be named?
 - Interface, stacks, data, groups, users
 - Brittle if names change with topology or org structure
- Structure of the namespace(s)?
 - Scope, uniqueness and authority (e.g., hierarchy or flat)
 - Impact on search/routing scale and management
- Is resolution required?
 - Early may fail faster but be wrong in high delay settings
 - Impact on latency and robustness
- Coupling and persistence?
 - Coupling can be algorithmic (e.g., "ni" names)
 - Or may require persistent storage & management for lookup

DTN and ICN Naming

- DTN names endpoints/groups or predicates
 - Using a URI-based format with scheme and SSP
 - Supports multiple simultaneous name formats
 - Designed originally as a push model to destination
 - Evolution since then using queries extension (BPQ)
- ICN names data and matches data to interests
 - Receivers express 'interests' in data
 - Which may be delivered from any node (cache)
 - Not naming nodes eases mobility, but raises issues

Naming Syntax and Scope

- DTN leaves exact naming open for definition
 - But starts with URI and regex match baseline
- ICN has not come to agreement (yet?)
 - Flat couples to content, hard to aggregate
 - Hierarchical easy to aggregate, hard to change
 - (intermediate options: scope ID)
- Resolution is required if ID->Loc is an overlay
 - Stretch versus scalability implication for routing

Routing and Forwarding

- DTN and ICN route on IDs (not nec. addresses)
 - No fixed limit on size or # of identifiers
 - No issue (or need for, hopefully) NAT
 - No major issue of re-binding or multihoming
- DTN routing has a concept of contacts
 - And times/durations they become active
 - Lots of schemes in literature (some have time loops)
- ICN (NDN) routing can be naturally multipath
 - With loops avoided by recognizing interests/data
- NDN does not address particular hosts
 - But instead content objects

More on Routing

- We understand unicast routing on a graph
 - Paths, stretch, etc. expressed as f(V, E)
 - Most often on a static (often regular) graph
- We understand something about multicast
 - Minimum Steiner tree computation is NP-hard
 - We've tried lots of others (PIM, MOSPF, RPM...)
- So, we are faced with:
 - (Distributed), dynamic, (multi-copy) routing that is not bounded in ICN by |E| or |V|... rich area?

Storage

- Storage used to be comparatively expensive
 - But thanks to Moore's Law isn't now
- Packet switching uses short-term storage
 - Store and forward queues (volatile)
 - Statistical multiplexing; short-term rate adaptation
- Just putting more into routers isn't always good
 - Buffer bloat more latency for no benefit
- And persistent storage is now cheap too
 - Kryder's Law 2x magnetic density increase / 18 mos

Storage

- DTN uses storage primarily for persistence and disruption tolerance
 - N-copy routing, restart, custody transfer
- ICN uses it for latency reduction and DT
 - Moderate-term storage acts as a cache
 - Also tolerates modest link outages/disruptions
- Some projects make it visible to applications
 - Lockers (SAILOR), DECADE (RFC6392)
 - Might change how media applications operate

Security Models

- Today: mostly channel security
 - 802.1X, EAP, IPsec, TLS [endpoint is a host/port]
- A few exceptions that focus on content
 - DNSSEC [observes <u>sender</u> maybe != <u>author</u>]
- Basic needs for content security
 - In DTN
 Authentication
 Confidentiality
 Provenance

 REGISTERS FINDS
 Content
 Protocol

Data Access Control

- Many people want controlled sharing of their private information
- Establishing the threat and trust model
 - Does Bob trust his private content on Alice's box?
 - The DRM problem
 - Does Alice trust (anybody's) content on her box?
 - Isolation, sandboxing, taint tracking, IFC
 - Does an ICN network stack require attestation?
 - Does a user know server is checking signatures?

Availability

- New potential areas for DoS in ICN
 - REGISTERs and FINDs both generate traffic
 - Anonymity already built in if no source ID concept
 - Long ID parsing
 - Fragmentation interaction (e.g. with signatures)
 - Crypto processing
 - Traffic against mapping system (if one exists)
- Concern regarding diags in DTN Bundle Proto

Forwarding Performance

- DTN has not focused on this
 - And one might consequently expect slow results
 - Yet VoIP-over-DTN has been demonstrated, and...
- ICN projects have focused on this
 - In particular, variable length names (which are applicable to DTN as well) can be forwarded at reasonably high speed

Chunking and Transport

- DTN Bundle Protocol High-Effort Delivery
 - Custody transfer between custodians
 - Preference for reliable delivery transports
 - But does not guarantee e2e in-tact delivery
- Content Chunking
 - DTN has proactive and reactive fragmentation
 - ICN approaches differ-
 - Packet size stays below path MTU (NDN/CCN)
 - Multi-Level Encodings for Objects

Table of Issues/Features

Feature	DTN	ICN
Push model	yes	No but "preplacing" content ~ similar
Interest	recent	yes
Storage	Persistent	Transient (persistent is add-on)
Channel sec	Option	No (may be in transport protocol)
Content sec	Option	yes
1-way links	Yes	No
Custodian	Integral	Separate
Node IDs	Yes	Varies [No (NDN) / Yes (Netinf)]
Conv. Layer	Yes	Yes (Netinf – explicit) / Yes (CCN – effectively)
Lifetimes	Yes	Yes (on data and on interests)
Fragments	At any node	Source only
Multicast	Nacent	Recv-driven (implicit)
Names	Regex on strings (URI)	Prefix-based names (CCN); flat names (Netinf)

Deployment Considerations

- ICN-like capabilities at the application layer continue to evolve elsewhere
 - DECoupled Application Data Enroute (IETF)
 - CDN Interconnection (IETF CDNI RFC 6707)
 - HTTP 2.0 (IETF HTTPBIS)
- So will ICN (or DTN) be widely deployed?
 - Install base would be difficult to overturn
 - But multiple niches will continue to exist
 - Long latency, disruption prone, data center

Some Remaining Challenges

- Privacy as balanced with 'caching everywhere'
 - Users may wish to control distribution of their interests or visibility of what's cached near them
- Scalability balanced with 'name everything'
 - Routing to many more objects than nodes in a topology; indirection adds latency and stretch
- System optimality versus business rules/policy
 - Algorithms (e.g., BGP) not so elegant when forced to be tweaked according to externalities
 - Like network traffic engineering, media policies

Common Research Themes

- Routing / forwarding scalability
 - Objects not constrained by physical topology size
 - Long, variable-length names not like fixed 32 bits
 - Discovery of local nodes/objects/attributes
- In-network storage management
 - Cache eviction, custody, DoS resistance, priority
 - Multicast operations over time
- Security and privacy
 - Scalability, revocation, resource exhaustion
 - Content/policy-enforcing gateways
 - Threat model

Conclusions I

- DTN has focused on architectural components
 - Storage, custody transfer, timing, security
 - Framework for naming, routing [pluggable]
- Also, operations on some unusual networks
 - SCF ad-hoc networks, high delay, one-way
- ICN has come to some similar conclusions
 - But has focused on naming and content
 - Mostly for moderately-well-performing links

Conclusions II

- So, has DTN influenced ICN?
 - Design similarities would suggest 'yes'
- Can DTN do what ICN wishes to do?
 - With framework components, probably so
 - But ICN does hold latency to be important
- Can ICN do what DTN does?
 - Probably so for fairly well-performing networks
 - Others are harder (1-way links, persistence, delay)

Some References

- A Survey of Information-Centric Networking, IEEE Communications, July 2012
- Information Centric Networking: Seeing the Forest for the Trees, HotNets 2011
- http://www.irtf.org/{icn,dtn}rg (2 URLs)

Thanks kfall@qti.qualcomm.com