Delay-Tolerant Networking: Issues & Recent Results

Kevin Fall Intel Research, Berkeley

kfall@intel.com

http://WWW.DTNRG.ORG

19th IEEE Workshop on Computer Communications October 19, 2004 / Bonita Springs, FL

Outline

Why the Internet Architecture is not a 'one-size-fits-all' solution
The DTN Routing Problem
Recent Implementation Results

Unstated Internet Assumptions

- End-to-end RTT is not terribly large
 - A few seconds at the very most [typ < 500ms]
 - (window-based flow/congestion control works)
- Some path exists between endpoints
 - Routing usually finds single "best" existing route
 - [ECMP is an exception]
- E2E Reliability using ARQ works well
 True for low loss rates (under 2% or so)
- Packet switching is the right abstraction
 Internet/IP makes packet switching interoperable

Non-Internet-Like Networks

Stochastic mobility

- Military/tactical networks
- Mobile routers w/disconnection (e.g. ZebraNet)
- Periodic/predictable mobility
 - Spacecraft communications (LEO sats)
 - Busses, mail trucks, delivery trucks, etc. (InfoStations)

"Exotic" links

- Deep space [Mars: 40 min RTT; episodic connectivity]
- Underwater [acoustics: low capacity, high error rates & latencies]
- Sensor networks, mules

DTN challenges...

- Intermittent/Scheduled/Opportunistic Links
 - Scheduled transfers can save power and help congestion; scheduling common for esoteric links
- High Link Error Rates / Low Capacity
 - RF noise, light or acoustic interference, LPI/LPD concerns
- Very Large Delays
 - Natural prop delay could be seconds to minutes
 - If disconnected, may be (effectively) much longer
- Different Network Architectures
 - Many specialized networks won't/can't ever run IP

What to Do?

- Some problems surmountable using Internet/IP
 - 'cover up' the link problems using PEPs
 - Mostly used at "edges," not so much for transit
- Performance Enhancing Proxies (PEPs):
 - Do "something" in the data stream causing endpoint (TCP/IP) systems to not notice there are problems
 - Lots of issues with transparency— security, operation with asymmetric routing, etc.
- Some environments *never* have an e2e path
 Consider an approach tolerating disconnection, etc...

Delay-Tolerant Networking Architecture

- Goals
 - Support interoperability across 'radically heterogeneous' networks
 - Acceptable performance in high loss/delay/error/disconnected environments
 - Decent performance for low loss/delay/errors
- Components
 - Flexible naming scheme with *late binding*
 - Message overlay abstraction and API
 - Routing and link/contact scheduling w/CoS
 - Per-(overlay)-hop reliability and authentication

Message Overlay Abstraction

• E2E Async Message Service: "Bundles"

- "postal-like" message delivery over regional transports with coarse-grained CoS [4 classes]
- Options: return receipt, "traceroute"-like function, alternative reply-to field, custody transfer
- Supportable on nearly any type of network
- Applications send/receive <u>messages</u>
 - "Application data units" of possibly-large size
 - May require framing above some transport protocols
 - API supports response processing long after request was sent (application *re-animation*)

So, is this just e-mail?

	naming/	routing	flow	multi-	security	reliable	priority
	late binding		contrl	app		delivery	
e-mail	Υ	Ν	N(Y)	N(Y)	opt	Υ	N(Y)
DTN	Y	Υ	Y	Υ	opt	opt	Υ

• Many similarities to (abstract) e-mail service

- Primary difference involves <u>routing/restart</u> and <u>API</u>
- E-mail depends on an underlying layer's routing:
 - Cannot generally move messages closer to their destinations in a partitioned network
 - In the Internet (SMTP) case, not disconnection-tolerant or efficient for long RTTs due to "chattiness"

E-mail security authenticates only user-to-user

Berkeley

Routing on Dynamic Graphs

- DTN routing takes place on a time-varying topology
 - Links come and go, sometimes predictably
 - Use any/all links that can possibly help
- Scheduled, Predicted, or Unscheduled Links
 - May be direction specific [e.g. ISP dialup]
 - May learn from history to predict schedule
- Messages fragmented based on dynamics
 - Proactive fragmentation: optimize contact volume
 - Reactive fragmentation: resume where you failed
 - Both are important for high utilization of precious link resources

The DTN Routing Problem

- <u>Inputs</u>: topology (multi)graph, vertex buffer limits, contact set, message demand matrix (w/priorities)
- An *edge* is a possible opportunity to communicate:
 - One-way: (S, D, c(t), d(t))
 - (S, D): source/destination ordered pair of contact
 - c(t): capacity (rate); d(t): delay
 - A **Contact** is when c(t) > 0 for some period $[i_k, i_{k+1}]$
- Vertices have buffer limits; edges in graph if ever in any contact, multigraph for multiple physical connections
- *Problem*: optimize some metric of delivery on this structure
 - Sub-question: what metric to optimize?

Use of Knowledge Oracles

Data Allocations by Algorithm

Min Expected Delay (MED): All data is carried by dialup Earliest Delivery (ED): Same for low and high load. {Split between dialup and satellite} ED, EDLQ, EDAQ make same choices for low load EDLQ, EDAQ start to use bike also

Delivery Delay Comparison

Low load: ED, EDLQ, EDAQ approx. same performance High load: EDLQ, EDAQ are optimal. ED is much worse MED has high delay in both cases FC performs well on average delay but has much worse max delay

'DTN2' Implementation

Experiment Setup

- Compare robustness to interruption / link errors
- Approaches compared
 - End-to-end TCP (kernel routing)
 - Proxied (TCP 'plug proxies')
 - Store-and-forward (Sendmail, no ckpoint/restart)
 - DTN (store-and-forward with restart)
- Link up/down patterns: aligned, shifted, sequential, random

BW Efficiency

No disruptions: DTN does well for small msgs, little overhead overall

Efficiency Trend

Store-and-forward delays increase w/msg size

Interruption Tolerance

Up/down 1m/3min; 40kb messages; shift 10s

Conclusions

- DTN foundational concepts appear to have wide applicability
- DTN Routing is a rich and challenging problem
- Reference implementation can be tricky
- Early performance results suggest our approach to disruption tolerance is effective

Status

- IETF/IRTF DTNRG formed end of 2002
 - See http://www.dtnrg.org
- DTN1 Agent Source code released 3/2003
- SIGCOMM Papers: 2003 [arch], 2004 [routing]
- Several other documents (currently ID's):
 - DTNRG Architecture document
 - Bundle specification
 - Application of DTN in the IPN
- Basis for new DARPA DTN program
- Part of NSF 'ICT4B' Project (with UCB)

Acknowledgements

• DTN/ICT4B People:

- Eric Brewer, Mike Demmer, Rabin Patra (UCB)
- Bob Durst, Keith Scott (MITRE)
- Kevin Fall, Melissa Ho (Intel Research Berkeley)
- Sushant Jain (UW Intern)
- S. Keshav (U Waterloo)
- Ting Liu (Princeton)

• Other DTN (IPN) People:

- Vint Cerf (MCI)
- Scott Burleigh, Adrian Hooke (NASA/JPL)
- Forrest Warthman (Warththman)
- Stephen Farrell (Trinity College, Ireland)
- The dtn-interest mailing list

http://www.dtnrg.org

http://tier.cs.berkeley.edu

On to an application...

ICT for Billions (ICT4B)

- Information and Communication Technologies for Developing Regions of the World
- Networking focus: *intermittent networking*
 - Mission-specific architecture and API
 - Multiple layers of network intermittency

ICT4B Application Areas

E-Government

- Forms, status updates, certifications
- Health
 - Early screening
- Trade
 - Price dissemination, market making
- Education
 - Various topics: health, agriculture, microfinance, etc.
- Alerts / News / Weather
- General communication

ICT4B Technology Areas

- Task-Specific Devices
 - Hand-held with speech recognition
 - Local wireless
 - Sensors
 - Uses: Medical, data entry, information, etc.
- Intermittent Networking
 - DTN forms the underlying networking technology
 - Capable of supporting async messaging over most any comms technology
- Distributed System Architecture
 - Back-end services in data center (databases, trading system, etc.)
 - Village-level kiosks (cache, I/O capability with devices, printer)
- Speech Recognition
 - Speaker-independent small-vocabulary approach
 - (currently taking samples in Tamil)
- Very Low Cost Displays
 - Using ink-jet printing approach

Some of The Team...[7/2004]

MSSRF (Villianur)...[7/2004]

MSSRF (Kizhur?)...[7/2004]

MSSRF (Veerampattinam)...[7/2004]

ICT4B Project Status

- ICT4B NSF ITR funded 10/2003 (5yr)
- DTN forwarding layer and early apps being tested (code released 3/2003)
- Joint UCB/Intel attendance at 'ICT for Sustainable Development' conference Jan 2004/Bangalore; 'Bridging the Divide' conference Mar 2004/Berkeley; 'Digital Rally' Apr 2004/San Jose; PolicyMaker's Workshop July 2004/Delhi
- Fellow travelers: HP Labs India, IIT Bombay/Kanpur/Madras, Univ. of Washington, MITRE, DARPA, NSF, CMU, UCLA, JPL, U Waterloo, MCI

