Compact Routing on Internet-Like Graphs

Dmitri Krioukov, UCSD/CAIDA

Kevin Fall, Intel Research

<kfall@intel-research.net>

Xiaowei Yang, MIT

The motivation

- BGP routing table size scalability concerns: immediate causes are well studied (multihoming, more peering, traffic engineering, address allocation, etc.), but...
- Typical "solution": aggregate using (multiple) levels of *hierarchical network partitioning* in the Kleinrock-Kamoun style, but...
 - This scheme does not work for densely connected networks, so:

The research problem

- What are the *fundamental* scalability limits (in terms of routing table size) for routing?
- Recall, *stretch* is defined as:
 - S = max[(hop count using routing scheme) / (shortest path in graph)]
- Fact: modern "compact routing" schemes can guarantee small routing table sizes. The price is increased maximum stretch, but...
- Low (~1) stretch may well be a requirement for Internet routing, so: What is the average stretch produced by these schemes on Internet-like [scale-free] topologies?

Stretch/local memory Results

- **\ddagger** Trivial shortest path \Rightarrow O(n log n)
- $\blacksquare 1 \le s < 1.4 \Longrightarrow \Omega(n \log n) (Gavoille/Perennes 96)$
- $\blacksquare 1.4 \le s < 3 \Longrightarrow \Omega(n) \text{ (Gavoille/Genegler 01)}$
- **#** $3 \le s < 5 \Rightarrow O(n^{1/2}\log n)$ (Eilam/Gavoille/Peleg 98)
- **#** Thorup & Zwick (TZ01): s=3, $\Omega(n^{1/2} \log^{1/2} n)$
 - Improves over s=3, O(n^{2/3} log^{4/3} n) (Cowen 99)
 - Nearly "optimal," up to logarithmic factor
 - The basis for our studies
 - (uses custom node labels; not a dynamic scheme)

Our Approach

- Analysis: evaluate average TZ stretch as a function of the first two moments of an (assumed Gaussian) distance distribution in a graph
- **I** <u>Simulations:</u> develop a TZ simulator and use it on uncorrelated random power-law graphs (generated by PLRG) with node degree $k (P_k \sim k^{-\gamma})$, and on classical random graphs

Our Results

Findings (analysis + simulations agree)

- Routing table sizes are *well below* the theoretical upper bounds (52 vs. 2187 for n=10,000)
- Average stretch:
 - is low (~1.1, ~70% paths are shortest [stretch-1])
 - does not depend on the power-law exponent γ
 - decreases with n (i.e. weak neg. correlation on n)

Remarkably, the average stretch function has a unique critical point and the Internet is located in its close neighborhood

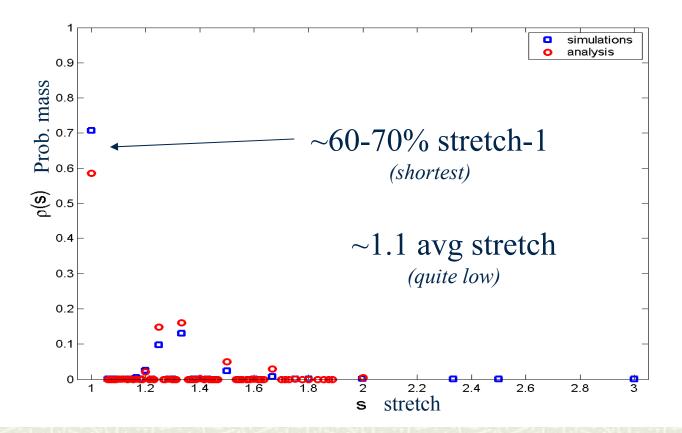
Routing table sizes are small



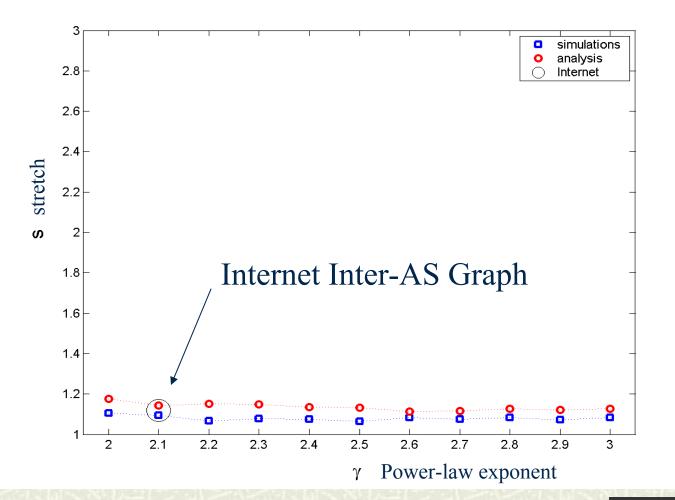
7

Stretch distribution / average

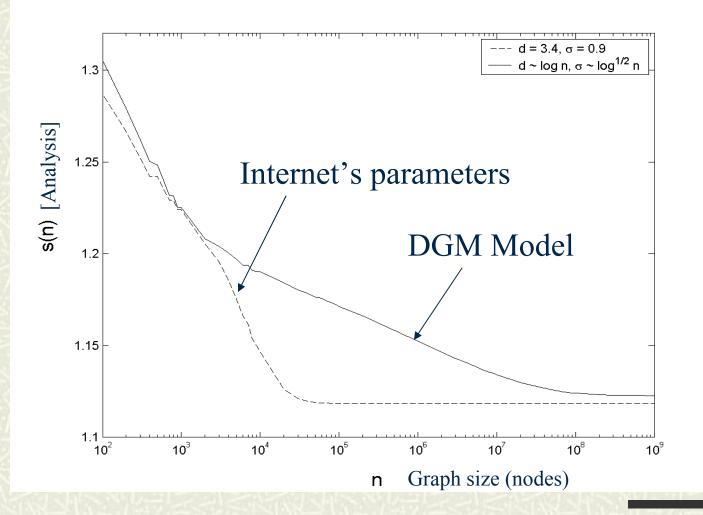
average s = 1.09 (simulations, 10k nodes) \Box average s = 1.14 (analysis, DGM model) \circ



Independence of γ (n:10000)

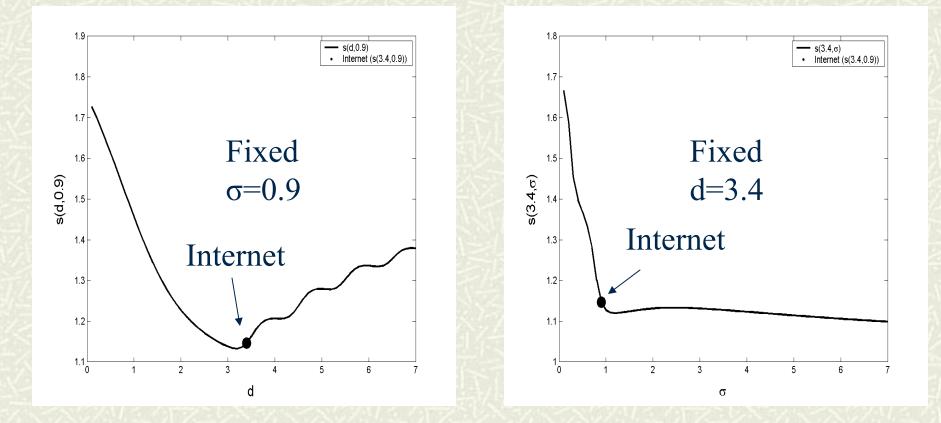


S Decreases with network size

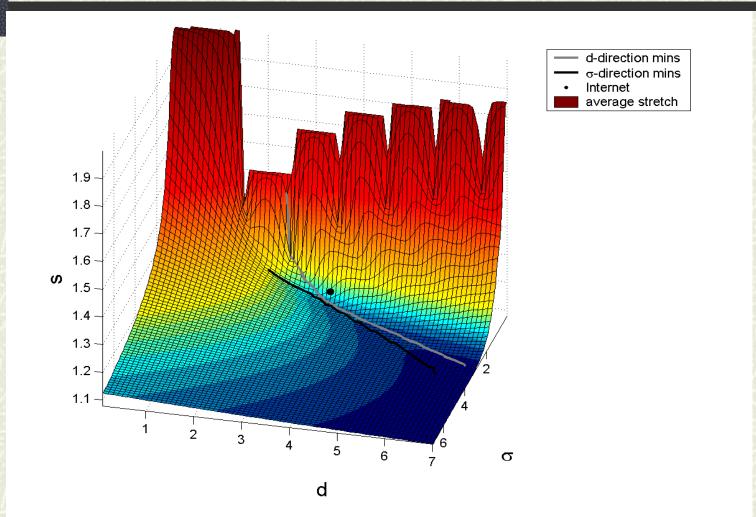


10

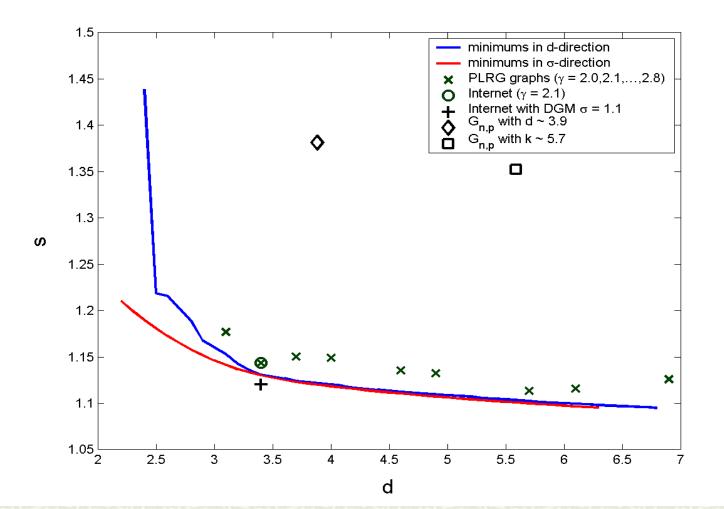
Avg Stretch Dependency on d,σ : Internet point ~ minimizes stretch



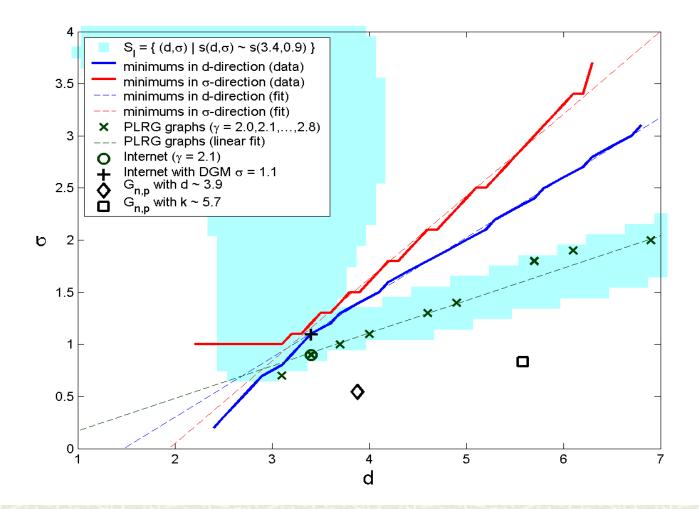
TZ Stretch function (3d)



Stretch function (d-s plane)



Stretch function (d- σ plane)



Summary

- Fundamental limits to routing table size scalability
 - Compact routing (TZ scheme):
 - + bounded stretch, small table sizes
 - + appears to work very well on scale-free graphs
 - not yet a dynamic routing scheme, not stretch-1
- - Stretch function may reveal drivers of Internet topology evolution
 - Need better understanding to know why

Thank you!