
Routing Tables: Is Smaller Really Much Better?

Kevin Fall
Gianluca Iannaccone

Sylvia Ratnasamy
Intel Labs Berkeley

P. Brighten Godfrey
University of Illinois at Urbana-Champaign

ABSTRACT
We examine the case for small Internet routing and forwarding ta-
bles in the context of router design. If Moore’s Law drives cost-
effective scaling of hardware performance in excess of the Inter-
net’s growth, protocol modifications and “clean slate” efforts to
achieve major reduction in routing table sizes may be unnecessary.
We construct an abstract model for the computation and memory
requirements of a router designed to support a growing Internet in
light of advances being made in multi-core processor design and
large, fast memories. We conclude that these advances are largely
sufficient to keep the sky from falling.

1. INTRODUCTION
The size and growth of the Internet’s routing tables has raised

considerable attention in the last few years [1]. In research gath-
erings this purported problem isn’t so much an area of active in-
vestigation, but rather a starting assumption that justifies various
techniques such as protocol changes or alternative addressing and
routing architectures aimed at ameliorating its effects.

Given the considerable interest and potentially dire implications
of being caught unprepared, it is somewhat surprising that we find
scant (public) discussion as to exactly why the present routing sys-
tem is believed to have a scaling problem, and whether or not the
size of the routing table is at fault. In this paper, we aim to take a
closer look at this issue in hopes of shedding more light on whether
the ability of future routers to do their job is really threatened by
the routing table size growth. We take a router-centric approach,
and investigate how the consequences of larger tables affect various
parts of a high-end router that might be placed in the default-free
zone of the Internet topology. Understanding the situation in some
detail matters because there are lots of ways to design a router, and
depending on the precise nature of the problem, we will either be
able to ride Moore’s law toward the future with a modest set of
engineering changes, or fall off it and require a major overhaul,
perhaps with a new addressing architecture or forcing disconnec-
tion for some segment of the population (bordering on a potential
human rights issue) [2].

We begin by deconstructing a router to its abstract constituent
parts, focusing on those pieces that might be impacted by scala-
bility concerns. We then develop a framework for evaluating the
scalability of each component, and use it to draw high-level con-
clusions about the ability of each component to scale in the future.
Our evaluation uses rough calculations based on public information
and some degree of discussion with industry experts. While we are
not the first to discuss overall scaling trends (see [3] and [4], for
example), our contribution is to examine these trends with specific
regard to modern components used for implementing routers, and
how network research may be guided given this understanding.

RIB-IN

RIB-IN

RIB-IN

RIB-OUT

RIB-OUT

RIB-OUT

LOC-RIBroute
processor

data packets

fro
m

 p
ee

rs to peers

Line card
Line card

Line cards

bandwidth

CPU

control memory
bandwidth

data packets

FIB memory

LPM throughput

FIB update throughput

data packets

Line card
Line card

Line cards
data packets

Switch
Fabric

forwarding
throughput

Figure 1: A model router with potential bottlenecks identified:
computing, communication, and storage resources.

2. A MODEL ROUTER
There are several major components that comprise a router (or,

more specifically the components of a router related to routing and
forwarding of IP datagrams), as illustrated in Figure 1. There are
I/O interfaces that receive and transmit packets, wiring within the
router for internal communication, memory to hold tables and other
state, and processors for selecting best routes and forwarding pack-
ets. It is conceivable the rate of growth in the routing table could
exceed the growth capacity of the technology used to implement
any of these key components. If so, we are headed for an artificial
limitation on the Internet’s performance, or greatly increased costs
implied by the need to integrate ever more exotic technology to
keep up.

Although a variety of approaches have been used, there is often a
logical (or physical) separation between the data plane and control
plane components of the router. In the data plane, a set of line cards
contain the I/O interfaces and provide the interface between physi-
cal network media and the router’s internal switch fabric. On each
line card there exists a forwarding engine (or element) that executes
the Internet’s longest matching prefix (LPM) algorithm to direct
datagrams to their selected next hops. The engines generally access
fast FIB memory that contains the forwarding table (FIB). The en-
gine inspects an arriving packet and determines, based on the FIB
contents, which port to send the packet. Data plane components
such as these must be implemented with attention to high-speed
operation, as each component contributes to a packet’s forwarding
latency.

Logically (and often physically) separate from the data plane is
the control plane, comprised of one or more route processors (RPs)
that are responsible for determining the best next hop for each des-
tination and programming each line card so traffic is directed to
the appropriate place. RPs in core Internet routers execute a short-
est path algorithm (e.g., Dijkstra), advertise and receive routing in-
formation with a set of peers using the Border Gateway Protocol
(BGP), and update the FIB memory as required should a destina-
tion become reachable via a different port (or not reachable at all).

From a computer systems perspective, a router such as this is a
small distributed system in the data plane and a centralized system
in the control plane. Each element of the distributed system (line
card) has computation (forwarding engine), memory (FIB), and I/O
ports (to the switch fabric and physical network media). RPs also
have computation, memory, and I/O ports. Both line cards and RPs
are affected by the size and update rate of the routing table. The
RPs are also directly affected by the number of peers the router
communicates with.

3. CONTROL PLANE CONSIDERATIONS
In this section we focus on the control plane requirements of

a BGP router. We first outline the control plane architecture, and
then evaluate the implications on processing, internal communica-
tion, and storage resources implied by the execution of the BGP
processing task.

A BGP router maintains a (TCP) peering session with each of
its neighbors or peers. For each neighbor, it learns route prefixes
coincident with the receipt of BGP messages. Prefix tables built
using received BGP messages are stored in a RIB-IN data struc-
ture – one for each peer. When there are changes to some prefix,
the available paths for that prefix are re-evaluated to select the best
path. The locally-chosen best paths are then stored in the LOC-
RIB. The computation produces two outputs: one containing (fil-
tered) routing information to its downstream neighbors (stored in
the RIB-OUT structures), and another containing a representation
of the forwarding table (FIB), used to program the forwarding en-
gine on a line card.

One key parameter in our evaluation is the number of neighbors
that a router maintains, a number which can vary dramatically and
can be adjusted by the network designer (e.g., with the use of route
reflectors). In our evaluation we assume 100 neighbors. This is a
relatively large value; for example, Juniper suggests that route re-
flectors or confederations may be used when there are more than
100 iBGP neighbors [5].

Given a fixed number of neighbors, network dynamics will drive
four principal forms of overhead we are interested in: (1) the mem-
ory required to store all of the above data structures—RIB-IN, RIB-
OUT and LOC-RIB; (2) the time to process an update; (3) the band-
width to propagate updates to the FIB; and (4) the bandwidth to
propagate updates to peers. We discuss each of these next.

Memory.
Assume a BGP router has p neighbors (peers). Assume each

peer delivers advertisements for n prefixes. The memory required
to store all the above data structures can be estimated as large as:
c1n(2p+1), because there is a RIB-IN and RIB-OUT structure for
each peer and the LOC-RIB for programmling the local forwarding
engines. c1 is a constant that will depend on the data structure used
to store prefix information. While we do not know exactly what
data structures commercial routers use, we make what we believe
are reasonable choices. At a high level, we want fast access to the
information for a given prefix (so as to process updates efficiently)
and low overall memory use. Very likely the former is more impor-

tant than the latter given low DRAM cost. Hence, we assume prefix
information is stored in an array and in addition we have a hash ta-
ble indexed by prefix that points to the prefix’s entry in the array. If
we assume n = 0.5M prefixes, p = 100 peers and c1 = 100 bytes,
then the total memory required is about 10GB. While not insignif-
icant, this is not really a barrier for standard embedded or general
purpose processor systems today. (Note this includes the worst case
assumption that every peer provides a table representing the entire
Internet).

Processing Time.
Processing time is tricky because we must take into account up-

date burstiness which has long been identified as an issue (for sev-
eral reasons, many tied to unusual events or bugs). Our approach
is to first estimate how long processing a single update should take
and then use simulation driven by a trace of actual BGP updates
from Route Views [6] (RV) to estimate the impact of burstiness.

Single update processing time. To consider the processing time
for a single update, we consider what fundamentally is required
under – once again – reasonable assumptions about how this infor-
mation is stored. What does it take to process an update for a prefix
P? We must: (a) look up the path information for P from the RIB-
IN for each of the p peers, (b) compare these paths, based on policy
and path length considerations and (c) write the result to the RIB-
OUT and LOC-RIB. (a) and (c) are dominated by memory accesses
and (b) is dominated by computation.

Let c2 denote the number of memory accesses required to access
the information for a single prefix in the RIB-IN and RIB-OUT
for a peer and c3 be the number of instructions required in step
(b). Then, we can estimate the processing time in terms of cycles
as: c2ma p + c3, where ma is the memory access time. We assume
a clocks-per-instruction (CPI) ratio of 1.0 – conservative because
we’re assuming the data we need is never in cache and typical
CPIs for compute instructions are closer to 0.5. If we once again
assume p = 100, c2 = 10, and typical ma = 100 and c3 = 50000
(all very conservative), then we get a processing requirement of
roughly 100K cycles. Considering a single modern processing core
has a 3GHz clock rate, that gives us about 33µs to process an up-
date. This estimate is also conservative because we actually have
8 cores on a modern CPU. If we assume one can obtain a 3× im-
provement from using 8 cores as is realistic on a modern CPU and
a cache (about 12MBytes in a standard processor today), we can
process an update in roughly 11µs. (Note that multi-threaded im-
plementations of BGP have already been demonstrated in the open
source community [7].)

We now compare this estimate to two benchmarking studies. Wu
et al. [8] indicated an update throughput of up to 3332 prefixes/sec
for a Cisco 3620 router, and up to 10000 prefixes/sec for a dual-
core 3 GHz Intel Xeon running XORP, corresponding to per-prefix
processing times of 300µs and 100µs per prefix, respectively. One
major difference is clearly the modern hardware which we use for
our estimate. In addition, might it be because the control plane
measured was single-threaded? Or is it due to the age of the tested
processors which lack large caches or memory bandwidth? For ex-
ample, the Cisco CRS route processor card includes two 1.2GHz
Freescale 7457 CPUs. These single-core processors are manufac-
tured with a 130nm process that is four generations behind cur-
rent 45nm state-of-the-art processes. They exhibit a rated maxi-
mum power consumption of around 24W. A core found in modern
general purpose processors can run at a frequency of 3GHz in the
same power envelope and area (and with a larger cache and band-
width to memory).

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

P
ro

ce
ss

in
g

tim
e

pl
us

 q
ue

ue
in

g
(s

ec
)

Processing time per update, no queueing (usec)

Max
95th %

Mean
Median

No bursts

Figure 2: Latencies of BGP updates, taking into account ob-
served burstiness, as a function of time to process one update.
For each statistic, there are three lines corresponding to Dec
2008, Jan 2009, and Feb 2009. The bottom line corresponds to
ideal latency with no burstiness.

More recently, a 2009 Cisco-sponsored benchmark by Isocore of
a Cisco ASR1004 aggregation service router [9] showed BGP con-
trol plane convergence in 75sec given a task of processing 1 million
IPv4 routes, i.e., 75µs per route. This control plane (IOS) is imple-
mented on a dual core 2.66GHz processor, suggesting that our 11µs
estimate for an 8-core, 3GHz processor may be reasonable. We will
use that estimate for the next step of our evaluation.

Accounting for burstiness. To characterize bursts, we use a simple
queuing model informed by RV data. The RV data set consists of
a trace of BGP update messages received by a router with p ≈ 43
peering sessions using full Internet (default-free) routing tables. We
assume that all these updates are queued, and processing one update
message takes x microseconds.

Figure 2 shows update processing time (including queuing) ver-
sus base processing time x (which assumes no burstiness thus no
queuing). We show the median, mean, 95th percentile, and max-
imum time over all updates. For each of these statistics there are
three lines, one for each of three months of data. Due to the vol-
ume of data, the median and 95th percentile lines are computed by
putting times into factor-of-2 sized buckets; the lower end of each
bucket is shown. For example, the figure shows that in the worst
month, processing 95% of updates within 1-2 seconds of their ar-
rival requires a CPU that can process an update in about 70 µsec,
or a throughput of 14,286 updates per second.

We note several features of this graph. First, burstiness signifi-
cantly increases the processing time of updates: even for the me-
dian update, it is more than 100× the ideal time (i.e., if the queue
were always empty when an update arrived). Second, the results
across the three months are quite consistent in all metrics except
the 95th percentile. This disparity is due to the occurrence of sig-
nificant events causing BGP session resets between the RV collec-
tor and one or more of its peers. In December 2008, such an event
occurred but accounted for less than 5% of the update messages
for that month, while in January and February 2009 these events
accounted for more than 5% of updates.

What can we conclude from this graph? Using the processing
time of x ≈ 11 µsec estimated above, the maximum latency is un-
der one second. But this assumes a router with ≈ 43 neighbors. We
can scale the RV results up to our assumed 100 neighbors by mul-
tiplying the required base processing throughput by 100

43 ; this cor-

responds to the somewhat pessimistic assumption that the bursti-
ness of updates from the 57 additional neighbors exactly aligns
with the burstiness in the dataset. In this case the maximum latency
becomes ≈ 2 sec. Viewing the results another way, if we target a
30-second maximum per-router update processing time1 then this
target can be met with a present-day CPU even if update rates (or,
roughly, FIB sizes) grow by 1.7×. Similarly we could support a
≤ 30-second mean processing time even if update rates grow by
9.8×.

In summary, there is no fundamental processing limitation im-
posed by CPU performance in supporting the control plane route
processing. As the route processing algorithm is parallelizable,
and as updates may simply be delayed if necessary, there is no hard
real-time performance requirement. Instead we have a tradeoff be-
tween CPU cost (or power) and global routing convergence time.
Our estimates indicate that we can achieve a reasonable point in this
tradeoff space—using a single modern CPU to achieve 30-second
per-router update processing time—with a 1.7× or 9.8× factor of
leeway in the CPU speed or incoming update rate, depending on
whether the maximum or mean convergence time is of interest. We
conclude that processing time is not an immediate scaling barrier,
but that it can be desirable to have much better convergence time
since, for example, fast convergence improves overall network re-
liability.

Interface to the FIB.
We assume that the size of a message sent from the control plane

to update the line cards (and FIB memory) is c4 bytes per prefix.
The information required includes the prefix (max 4 bytes for IPv4)
and new next-hop information (2 bytes, as described in [10] and in
the following section). Hence we can assume approx c4 = 10 bytes
per prefix. If we assume a per-update proccessing time t (which
we estimated at 11µs above) and if we assume that updates come
continually and each one requires an update to the FIB, then we re-
quire a FIB update throughput of c4

t , which for our numbers comes
to approx 7Mb/s. This rate is easily achieved with a separate con-
trol network or as a small fraction of the switch fabric bandwidth.
Of course, there is the additional question of whether the lookup
engine’s FIB data structure can be updated at this rate, a question
we examine in the following section.

Bandwidth to receive/transmit updates.
We consider a worst-case scenario to compute the bandwidth

required to propagate updates from the router in question to its
peers. Similar to the manner in which we computed the control-
processor-to-FIB, let t be the time to process an update. Assume,
pesimistically, that updates arrive continually, each requires propa-
gation, and that each is sent as an individual message of c5 = 100
bytes (i.e., there’s no aggregation of multiple prefix updates into a
single message). This scenario would require a worst-case update
bandwidth of 24Mb/s to each peer (and this is really wost-case). For
the default-free zone routers we are considering, this bandwidth re-
quirement presents no fundamental limitation.

1Note that updates can already be delayed by a larger due to
BGP’s Minimum Route Advertisement Interval (MRAI) MRAI
timer, which is usually set to 30 seconds.

4. DATA PLANE REQUIREMENTS
Many forwarding algorithms and data structures have been pro-

posed for implementing the IP longest matching prefix algorithm [11].
We base our discussion on the Tree-BitMap algorithm (TBM) [10],
for two main reasons. First, TBM does well on all the fronts that
are typically of concern for IP lookups: storage requirements, up-
date overhead and lookup times. Second, TBM is used in Cisco’s
flagship CRS-1 router [12] and can therefore be viewed as repre-
sentative of state-of-the-art in current routers.

With TBM, the FIB data structure is in essence a very compact
representation of a multi-bit trie; i.e., a trie in which each node has
an “expansion stride” of k bits. The compactness of the TBM trie
is due to a novel encoding scheme that ensures all trie nodes have
the same fixed size and that this size is small (we quantify node
size shortly). Each TBM trie node contains two bitmaps plus two
pointer values. For a TBM trie that expands k bits at each level,
the first bitmap indicates which of the node’s 2k − 1 prefixes of
length less than k are present. This bitmap requires 2k−1 bits. The
second bitmap contains a bit for each of the 2k possible child nodes,
indicating the presence (or lack thereof) of each child node – this
requires 2k bits. The child pointer stores the memory location of the
first child. By storing the children of a node in contiguous memory,
this single pointer is sufficient to compute the pointer to any child of
the node. The second result pointer stores the memory location of a
separate array that stores the next-hop information for the prefixes
present in the trie node.

The complete TBM solution introduces several optimizations to
the basic structure outlined above. For the performance bounds in
this paper, we assume two key optimizations from [10]. The first is
an “initial array” which contains 2i dedicated nodes corresponding
to the first i address bits. This allows quick (single memory access)
resolution of the first i bits for a storage cost of s×2i bytes, where
s is the size of each entry in the initial array we define below. The
second optimization is to include “skip” trie nodes used to avoid
long non-branching prefix-less paths to a prefix in the basic TBM
trie.

With the above assumptions, the bounds on resource require-
ments due to TBM are as follows.

FIB size.
A single trie node is of size s = (d 2k+1−1

8 e+ 6) bytes, assum-
ing 3 bytes per pointer. The upper bound on the total FIB mem-
ory requirements, including the initial array, the trie, and the space
needed to hold next-hop information (we assume 2 bytes each) 2

can be shown to be s×2i +2n(s+1) bytes, where n is the number
of prefixes, i is the (optional) number of bits indexed by the initial
array and k is the expansion stride for each trie node.

FIB lookup time.
The number of memory read accesses required to complete the

address lookup in the FIB is p−i
k + 1, where p is the length of the

prefix being looked up; i and k are as above.

FIB update time.
Updating an existing prefix – i.e., either changing the next-hop

information or temporarily disabling/enabling a prefix entry – in-
volves a lookup operation for that prefix followed by a write to
the corresponding trie or array entry. Hence the number of mem-

2The authors of [10] suggest up to 16 bytes of data should be
allocated for next hop information to handle features such as load
balancing. We use a simpler 16 bit value to cover the needs of a
basic router with up to 64K interfaces that we are considering.

Figure 3: A forwarding engine performs packet scheduling and
execution of the LPM algorithm at high speeds.

ory accesses required for each update is p−i
k memory reads plus 1

memory write.
Adding an altogether new prefix to the FIB is more expensive,

yet still bounded. TBM requires that a node’s children be laid out
contiguously in memory; thus in the worst case, adding a new prefix
might involve rewriting the entire set of trie nodes that are peers of
the new prefix. Hence in the worst case adding a new prefix can
involve copying up to 2k trie nodes (about 2k+1 memory accesses).
Fortunately, the addition of new prefixes is a rare occurence.

FIB update bandwidth.
As described in [10], both the FIB lookup and update operations

are easily implemented in hardware; in the event of a prefix update,
it is thus sufficient for the route processor(s) to just communicate
the to-be-updated prefix and next-hop information to the lookup
engine on the linecards (as opposed to having the route processor
itself compute the updated TBM and push it out directly to the FIB
memory on the linecard). Thus if we assume an average (worst-
case) prefix update rate of m, then the corresponding update band-
width from the control plane to each linecard is cm, where c is the
constant number of bits required to encode the prefix and next-hop
information.

In the following section, we examine the potential hardware options
to support the above requirements and their resultant cost, power
and performance tradeoffs.

5. IMPLEMENTATION
In the previous sections we have seen the amount of processing

and storage required to support path selection in the control plane
and packet forwarding and FIB updates in the data plane. To deter-
mine if Moore’s Law (and the silicon industry that works hard to
keep it a “law”) will support the projected needs we have identified,
we now explore our component options available for implementing
future routers.

Figure 3 shows the layout of a conceptual line card reponsible
for data plane processing. ASICS may be designed to trade off al-
most any power and performance rquirements at the cost of design,
development and testing. ASIC manufacturing is closely tracking
Moore’s Law although the overall complexity and development
cost may lead to a move to general purpose processors in the future.
However, one aspect of the data plane that requires closer inspec-
tion is the cost of memory operations involved in moving packets in

and out of the line cards and performing the look up and forwarding
operations.

We have already discussed the implementation requirements for
the control plane in Section 3. In this section, we focus on the hard-
ware requirements for implementing the data plane. We require
low-latency memory for holding forwarding tables (FIBs). Random
Access Memories are usually compared based upon three primary
metrics: cost, density, and access time. Static RAMs (SRAMs) are
the fastest and most costly memories. They are used commonly for
on-chip registers and cache hierarchies and are available only in
low density configurations due to their relative size. At the other
end of the spectrum, Dynamic RAMs (DRAMs) offer the least cost
and high densities (approx. $2/Gbit on today’s spot market [13])
but have the largest access times. The gap between SRAMs and
DRAMs is quite large. For example, SRAMs may have access times
of 1 ns or less [14] while DRAMs are on the order of 50-60 ns (and
have not decreased significantly in recent years). SRAM density is
at least one order of magnitude less than DRAMs while cost can be
two orders of magnitude greater.

Neither SRAMs nor DRAMs are suitable options for implement-
ing the FIB. SRAMs are too small and expensive. When CPU cache
was supported with external (SRAM) integrated circuits, the rela-
tive costs for SRAM were less. As of today, cache memory has
moved almost entirely on-chip, so the market for separate high-
speed SRAM components has largely dried up. They are now con-
sidered relatively exotic devices, with coincident high costs [1].

DRAMs are also not a viable option for supporting LPM lookups
given the high random access latencies. On a 40 Gb/s link, (40B)
packets may arrive every 8 ns and on 160Gbps, every 2 ns. Per-
forming lookup operations at that rate with DRAM’s access times
of 50-60 ns would require pipelining the lookup across a large ar-
ray of DRAM chips (up to 30 for 160 Gbps) accessed in parallel
(and replicating the entire forwarding table). The complexity, cost
and power consumption of such a design makes it unrealistic.

For these reasons, several manufacturers have produced other
memory products to address the limitations of SRAMs and DRAMs
for low latency applications such as packet processing workloads.
Reduced Latency DRAMs (RLDRAMs) provide the high density of
DRAMs together with faster random access times at a relatively
low cost. Double Data Rate (DDR) RLDRAM (RLDRAM II) al-
lows 16-byte reads with random access times of 15 ns [15]. Fur-
thermore, the memory layout on chip provides eight banks to help
reduce the likelihood of random access conflicts. If care is taken
in organizing (and replicating) a data structure across the memory
banks in such a memory, it is possible to issue up to 8 memory ac-
cess in one 15 ns interval. On the cost side, RLDRAM is between
2x and 5x the cost of DRAM with memory denominations of 576
Mbit/chip.

As discussed in Section 4, the TBM implementation of the LPM
technique requires traversing a multi-bit trie data structure. The
number of memory accesses in the data structure per packet de-
pends on the two parameters i and k. Using the value of i = 8 as
suggested in [10], we can then pick a value of k based on how
many memory chips and memory channels we can afford (in terms
of both cost and power consumption). Increasing the size of the
table requires more memory chips. Accessing multiple chips inde-
pendently in parallel requires multiple memory channels (see Fig-
ure 3). For example, a value of k = 24 would result in one sin-
gle read operation per lookup, reducing our pipeline length (i.e. a
packet would only take about 15 ns to be processed). Unfortunately,
doing so would also require 4 Mbytes per prefix! A more reason-
able value of k = 6 would instead lead to 4 memory accesses per
packet with a packet processing time of about 64 ns. The memory

Packet #1Bank 0

Bank 6

Bank 7

Bank 5

Bank 4

Bank 2

Bank 1

Bank 3

time

1st level

4th level

3rd level

2nd level

Tr
ee

 B
itm

ap

1st level

4th level

3rd level

2nd level

Tr
ee

 B
itm

ap
 (r

ep
lic

a)

15 ns

Packet #1

Packet #1

Packet #1

Packet #2

Packet #2

Packet #2

Packet #2

Packet #3

Packet #3

Packet #3

Packet #3

Packet #4

Packet #4

Packet #4

Packet #4

Packet #5

Packet #5

Packet #5

Packet #6

Packet #6

Packet #6

Packet #7

Packet #7

Packet #8

Packet #8

Packet #9

Packet #10

Figure 4: Example of pipelined memory accesses for lookup op-
erations. The memory has 8 banks and an access time of 15ns.
40B packets arrive back to back on a 40 Gbps link (i.e., 8 ns
interarrival).

requirement per prefix would then be a modest maximum of 46
bytes.

Given that a 40 Gbps link can receive up to 8 packets in a 64 ns
interval, the memory subsystem would be required to handle 8 con-
current memory accesses. The eight-bank RLDRAM II architecture
can handle such a requirement. However, the entire FIB would have
to be replicated given that at any point in time two packets may be
accessing the same level of the tree bitmap [10]. Figure 4 illustrates
this scheme with an example. The data structure is spread across 4
banks and replicated in the other 4 banks. This way the memory
chips can allow at every point in time to have two packets access-
ing the same area of the data structure.

The same argument can be used for a 160 Gbps link that would
require 4 times more memory chips, 4 memory channels and to
replicate the FIB 4 more times as well.

To put things in perspective, a FIB with 1M prefixes at 40 Gbps
would require 80 Mbytes of RLDRAM II, i.e. two 576 Mbit chips.
Each chip would consume less than 2W of power and cost less than
$20 — negligible considering current power and cost rating of line
cards. On a 160 Gb/s link, it would require 320 Mbytes, i.e., 5
memory chips.

The memory performance numbers we have seen support the
conclusion that we can process packets at line rate provided we can
handle multiple packets in parallel and hide memory latencies. This
can be accomplished as long as the FIB is replicated in memory (2
times for 40 Gbps and 8 times for 160 Gbps). Naturally, replicating
the data structure improves read performance at the cost of more
expensive writes.

As described in Section 4, updating an existing prefix in the FIB
results in one lookup operation plus one write on the next hop infor-
mation (that resides in the on-chip memory [10]). Thus, with i = 8
and k = 6, an update operation (assuming all replicas are updated
in parallel) would stop the forwarding engine and require buffering
of one packet per replica while the update is in progress.

Adding or deleting a prefix is more expensive as it require to
change the trie structure. With k = 6, each prefix would require 128
write operations per replica. Therefore, adding one prefix requires
stopping the forwarding engine for the equivalent of about 128×16
ns = 2µs. Adding 1M prefixes would stop the forwarding engine
for 4s. Table 1 summarizes our analysis for 40 Gbps and 160 Gbps
links over a wide range of routing table sizes.

Memory size (MB) Cost ($) Power (W)
Prefixes 40 Gbps 160 Gbps 40 Gbps 160 Gbps 40 Gbps 160 Gbps
256K 20,48 81.92 3.2 12.8 0.64 2.56
512K 40.96 163.84 6.4 25.6 1.28 5.12
1M 81.92 327.68 12.8 51.2 2.56 10.24
5M 409.6 1,638.4 64 256 12.8 51.2

Table 1: Memory size, cost and power for different routing table sizes and link speeds.

In summary, FIB memory size, cost and power consumption do
not seem to be valid reasons of concern for the overall scalability of
Internet routers. Even the most pessimistic projections do not envi-
sion a routing table size of 5M entries within the next decade [4].
One area of concern, however, is the FIB update costs for adding
or deleting prefixes (not just modifying them). Such events occurs
at much slower timescales (network or customer additions happen
on weekly schedules) although there may be pathological scenarios
that cause a large number of prefixes to be temporarily withdrawn.
In that case, one solution could be to update the trie data structure
to indicate that some entries are no longer valid. More work is re-
quired to investigate efficient ways of implemeting this mechanism.

6. CONCLUSION
In this paper, we have explored whether the growth in the size

or the rate of churn in the Internet’s routing and forwarding ta-
bles should be a major concern to the networking community. Sev-
eral research projects aim at ameliorating scaling concerns for ta-
bles and churn, yet we find no extreme urgency in this pursuit. In
essence, we conclude that the current growth trajectory of the In-
ternet’s routing system will not pose an insurmountable or unaf-
fordable challenge to implementation. That said, we do not suggest
building routers is an activity devoid of scalability concerns requir-
ing careful attention. We have focused on the scaling behavior of
the classic routing and forwarding functions of a router, yet there
are numerous other features a commercial router needs to support
(e.g, access control lists, policies, load balancing) which we have
not explored.

From a broader perspective, the viability of implementing a fast
router is one necessary but not sufficient contributing factor affect-
ing the Internet’s growth. There may be other technical and non-
technical factors that ultimately wield more influence. For exam-
ple, concerns regarding equal access (“network neutrality”), ad-
dress scarcity, and security may play more important and imme-
diate influential roles. Fortunately, our analysis suggests, thanks
largely to Moore’s Law, that there will remain head-room in the
component technologies used to implement network elements like
routers so that if and when these other growth concerns require
specific network functionality, they can be rendered at sufficient
performance and levels of cost.

7. REFERENCES
[1] D. Meyer (Ed), L. Zhang (Ed), and K. Fall (Ed). Report from

the IAB Workshop on Routing and Addressing, September
2007. RFC 4984.

[2] DiploFoundation. IPv6 and Its Allocation.
www.diplomacy.edu/poolbin.asp?IDPool=130, Feb. 2006.

[3] Geoff Huston and Grenville Armitage. Projecting Future
IPv4 Router Requirements from Trends in Dynamic BGP
Behavior. In Proceedings of ATNAC ’06. Australian
Telecommunication Networks and Applications Conference,
December 2006.

[4] David G. Andersen, Hari Balakrishnan, Nick Feamster,
Teemu Koponen, Daekyeong Moon, and Scott Shenker.
Accountable Internet Protocol (AIP). In Proc. ACM
SIGCOMM, Seattle, WA, August 2008.

[5] Juniper Networks. Managing a large-scale as. http:
//www.juniper.net/techpubs/software/erx/
erx41x/swconfig-routing-vol2/html/
bgp-config13.html.

[6] Route Views project. http://routeviews.org.
[7] Quagga Routing Suite. http://quagga.net.
[8] Q. Wu, Y. Liao, T. Wolf, and L. Gao. Benchmarking BGP

routers. In IEEE 10th International Symposium on Workload
Characterization, 2007. IISWC 2007, pages 79–88, 2007.

[9] Isocore. Validation of cisco asr 1000, March 2009.
http://www.cisco.com/en/US/prod/
collateral/routers/ps9343/
ITD13029-ASR1000-RP2Validationv1_1.pdf.

[10] Will Eatherton, Zubin Dittia, Z. Dittia, and George Varghese.
Tree Bitmap : Hardware/Software IP Lookups with
Incremental Updates, 2002.

[11] H. Jonathan Chao and Bin Liu. High Performance Switches
and Routers. Wiley-IEEE Press, 2007.

[12] http://cseweb.ucsd.edu/users/varghese/research.html.
[13] DRAM Exchange Spot Prices.

http://www.dramexchange.com.
[14] QDR SRAM Consortium.

http://www.qdrconsortium.com.
[15] Micron rldram memory.

http://www.micron.com/rldram.

